AI Article Synopsis

  • The study investigates the effects of the H56:IC31 vaccine in conjunction with standard TB treatment, aiming to enhance immune responses in TB patients.
  • A total of 11 vaccinated patients and 7 control patients participated, with blood samples taken at multiple time points to evaluate gene expression related to immune responses.
  • Results show that the vaccine led to significant changes in immune gene expression, especially after the first dose, and that vaccinated patients had improved immune profiles even two months post-treatment compared to controls.

Article Abstract

Introduction: Therapeutic vaccination in tuberculosis (TB) represents a Host Directed Therapy strategy which enhances immune responses in order to improve clinical outcomes and shorten TB treatment. Previously, we have shown that the subunit H56:IC31 vaccine induced both humoral and cellular immune responses when administered to TB patients adjunctive to standard TB treatment (TBCOX2 study, NCT02503839). Here we present the longitudinal whole blood gene expression patterns in H56:IC31 vaccinated TB patients compared to controls receiving standard TB treatment only.

Methods: The H56:IC31 group (N=11) and Control group (N=7) underwent first-line TB treatment for 182 days. The H56:IC31 group received 5 micrograms of the H56:IC31 vaccine (Statens Serum Institut; SSI, Valneva Austria GmbH) intramuscularly at day 84 and day 140. Total RNA was extracted from whole blood samples collected in PAXgene tubes on days 0, 84, 98, 140, 154, 182 and 238. The expression level of 183 immune-related genes was measured by high-throughput microfluidic qPCR (Biomark HD system, Standard BioTools).

Results: The targeted gene expression profiling unveiled the upregulation of modules such as interferon (IFN) signalling genes, pattern recognition receptors and small nucleotide guanosine triphosphate (GTP)-ases in the vaccinated group compared to controls two weeks after administration of the first H56:IC31 vaccine. Additionally, the longitudinal analysis of the Adolescent Cohort Study-Correlation of Risk (ACS-COR) signature showed a progressive downregulation in both study arms towards the end of TB treatment, in congruence with reported treatment responses and clinical improvements. Still, two months after the end of TB treatment, vaccinated patients, and especially those developing both cellular and humoral vaccine responses, showed a lower expression of the ACS-COR genes compared to controls.

Discussion: Our data report gene expression patterns following H56:IC31 vaccination which might be interpreted as a lower risk of relapse in therapeutically vaccinated patients. Further studies are needed to conclude if these gene expression patterns could be used as prognostic biosignatures for therapeutic TB vaccine responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904528PMC
http://dx.doi.org/10.3389/fimmu.2024.1350593DOI Listing

Publication Analysis

Top Keywords

h56ic31 vaccine
16
gene expression
16
expression patterns
12
vaccinated patients
12
h56ic31
8
immune responses
8
standard treatment
8
patterns h56ic31
8
compared controls
8
h56ic31 group
8

Similar Publications

It is estimated that one-third of the world's population is infected with Mycobacterium tuberculosis. Infection typically remains latent, but it can reactivate to cause clinical disease. The only vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is largely ineffective, and ways to enhance its efficacy are being developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!