In the last few decades, nanoparticles have been a prominent topic in various fields, particularly in agriculture, due to their unique physicochemical properties. Herein, molybdenum copper lindgrenite Cu(MoO)(OH) (CM) nanoflakes (NFs) are synthesized by a one-step reaction involving α-MoO and CuCO⋅Cu(OH)⋅xHO solution at low temperature for large scale industrial production and developed as an effective antifungal agent for the oilseed rape. This synthetic method demonstrates great potential for industrial applications. Infrared spectroscopy and X-ray diffraction (XRD) results reveal that CM samples exhibit a pure monoclinic structure. TG and DSC results show the thermal stable properties. It can undergo a phase transition form copper molybdate (CuMoO) at about 300 °C. Then CuMoO nanoparticles decompose into at CuO and MoO at 791 °C. The morphology of CM powder is mainly composed of uniformly distributed parallelogram-shaped nanoflakes with an average thickness of about 30 nm. Moreover, the binding energy of CM NFs is measured to be 2.8 eV. To assess the antifungal properties of these materials, both laboratory and outdoor experiments are conducted. In the pour plate test, the minimum inhibitory concentration (MIC) of CM NFs against Sclerotinia sclerotiorum (S. sclerotiorum) is determined to be 100 ppm, and the zone of inhibiting S. sclerotiorum is 14 mm. When the concentration is above 100 nm, the change rate of the hyphae circle slows down a little and begins to decrease until to 200 ppm. According to the aforementioned findings, the antifungal effects of a nano CM NFs solution are assessed at different concentrations (0 ppm (clear water), 40 ppm, and 80 ppm) on the growth of oilseed rape in an outdoor setting. The results indicate that the application of CM NFs led to significant inhibition of S. sclerotiorum. Specifically, when the nano CM solution was sprayed once at the initial flowering stage at a concentration of 80 ppm, S. sclerotiorum growth was inhibited by approximately 34%. Similarly, when the solution was sprayed once at the initial flowering stage and once at the rape pod stage, using a concentration of 40 ppm, a similar level of inhibition was achieved. These outcomes show that CM NFs possess the ability to bind with more metal ions due to their larger specific surface area. Additionally, their semiconductor physical properties enable the generation of reactive oxygen species (ROS). Therefore, CM NFs hold great potential for widespread application in antifungal products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909880 | PMC |
http://dx.doi.org/10.1038/s41598-024-53612-0 | DOI Listing |
Front Plant Sci
December 2024
Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.
View Article and Find Full Text PDFTransgenic Res
January 2025
Faculty of Food and Nutritional Sciences, Toyo University, 48-1 Oka, Asaka-shi, Saitama, 351-8510, Japan.
The environmental risk assessment (ERA) of genetically modified (GM) crops in Japan requires collecting data from a comparative study of a GM and non-GM control in an in-country confined field trial (CFT). This in-country CFT requirement is used to address concerns that differences in the local environmental conditions may lead to differences in growth and/or risks of GM crops. However, this requirement for in-country CFT has recently been exempted for certain GM maize and GM cotton traits, and instead CFT data from other countries are used to inform the ERA of these GM events.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are among the most promising alternatives to mineral fertilizers. However, little is known about the effects of applied bacteria on the native microbiota, including the rhizobacterial community, which plays a crucial role in bacteria-plant interactions. Therefore, this study is aimed at assessing the effects of PGPB not only on plants but also, importantly, on the native rhizobacterial community of winter oilseed rape.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, China.
Unlabelled: The biodiversity of CO-assimilating bacterial communities is pivotal for carbon sequestration in agricultural systems. Changes in the diversity, structure, and activity of the soil chemolithoautotrophic bacteria were examined in four agricultural areas, Dulan (DL), Gonghe (GH), Huzhu (HZ), and Datong (DT) counties in Qinghai Province, where wheat, oilseed rape, and barley were planted. This process was performed using Illumina amplicon sequencing of the ribulose-1,5-bisphosphatecarboxylase/oxygenase (RubisCO) gene ( Form I) and activity data.
View Article and Find Full Text PDFToxics
December 2024
Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia.
The ability of some rhizosphere bacteria to mitigate herbicidal stress in cultivated plants may be useful in agriculture and bioremediation. There is poor understanding of how bacteria directly or through herbicide degradation affect the biochemical processes in plants exposed to sulfonylurea herbicides. In this study, treatment with a combination of herbicide metsulfuron-methyl (MSM) and bacteria ( DA1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!