Cardiotoxicity is a serious adverse effect of anti-cancer drugs. Anti-cancer drug-induced cardiotoxicity are arrhythmia, cardiac contractile dysfunction, coronary artery disease, and hypertension, which affect to the quality of life in patients with cancer. In particular, cardiac contractile dysfunction is a life-threatening symptom leading to heart failure, suggesting that it is very important to predict the risk of developing the contractile dysfunction by anti-cancer drugs. Recently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can be used to assess the risk of drug-induced arrhythmias. This prompts us to evaluate other cardiotoxic effects such as contractility dysfunction and structural toxicity with hiPSC-CMs. Since anti-cancer drug-induced contractility dysfunction are considered to be induced by chronic exposure, we have developed a method to assess chronic contractility dysfunction by imaging analysis of hiPSC-CMs. BMS-986094, which failed in clinical trials due to the occurrence of heart failure, was used as a positive compound. We found that chronic exposure to BMS-986094 decreased the contraction and relaxation velocity in hiPSC-CMs. Doxorubicin was observed to decrease cytotoxicity and both contraction and relaxation velocities in hiPSC-CMs. We are currently further evaluating other anti-cancer drugs with different mode-of-actions using hiPSC-CMs and assess the predictivity and utility of contractile assessment using hiPSC-CMs by comparing with real-world data. Here, we introduce our novel method to assess the chronic contractility of hiPSC-CMs by imaging analysis and discuss the future perspectives for assessing the anti-cancer drug-induced cardiotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1254/fpj.23094DOI Listing

Publication Analysis

Top Keywords

anti-cancer drugs
16
anti-cancer drug-induced
12
contractile dysfunction
12
contractility dysfunction
12
drug-induced cardiotoxicity
8
cardiac contractile
8
heart failure
8
hipsc-cms
8
hipsc-cms assess
8
chronic exposure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!