The NADPH oxidase 2 subunit p47 binds to the WAVE regulatory complex and p22 in a mutually exclusive manner.

J Biol Chem

Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA. Electronic address:

Published: April 2024

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47 subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47 uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47 uses the same binding pocket to interact with both the WRC and the p22 subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47 may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979099PMC
http://dx.doi.org/10.1016/j.jbc.2024.107130DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
8
wave regulatory
8
regulatory complex
8
mutually exclusive
8
exclusive manner
8
actin cytoskeleton
8
actin polymerization
8
activated p47
8
p47
5
subunit
4

Similar Publications

Obesity is associated with abnormal repolarization manifested by QT interval prolongation, and oxidative stress is an important link between obesity and arrhythmias. However, the underlying electrophysiological and molecular mechanisms remain unclear. The aim of this study is to evaluate the role of obesity in potassium current in ventricular myocytes and the potential mechanism of NADPH oxidase 2 (Nox2).

View Article and Find Full Text PDF

SGLT2 expression in human vasculature and heart correlates with low-grade inflammation and causes eNOS-NO/ROS imbalance.

Cardiovasc Res

December 2024

Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France.

Aims: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) show a cardioprotective effect in heart failure and myocardial infarction, pathologies often associated with low-grade inflammation. This cross-sectional study aims to investigate whether low-grade inflammation regulates SGLT2 expression and function in human vasculature, heart, and endothelial cells (ECs).

Methods And Results: Human internal thoracic artery (ITA), left ventricle (LV) specimens, and cultured porcine coronary artery ECs were used.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is a severe condition associated with high mortality and disability rates. Oxidative stress plays a critical role in the development of secondary brain injury (SBI) following ICH. Previous research has demonstrated that Annao Pingchong decoction (ANPCD) treatment for ICH has antioxidant effects, but the exact mechanism is not yet fully understood.

View Article and Find Full Text PDF

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, (), through phytochemical characterization using liquid chromatography-mass spectrometry (HPLC-MS), as well as in vitro and in silico evaluation of its biological activities (antioxidant and antimicrobial). Phytochemical characterization revealed that the ethanolic extract of (DdEx) is rich in phenolic compounds, with a total of 22 phycocompounds identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!