Beetle elytra act as natural protective covers and effectively shield their flexible abdomens and fragile hindwings from damage. The existing studies have attributed this contribution of the elytra to its honeycomb structures. In this combined experimental and theoretical study, we used the seven-spotted ladybird beetle to demonstrate that both biological morphology and the hollow structure of the dome-like elytra combined to reduce damage during falling. The falling ladybird beetles had a high probability (59.52%) of hitting the ground with the costal edge of the elytra. This strategy could assist with converting the translational energy into rotational kinetic energy, resulting in the reduction of the impulse during falling. In addition, the hollow structures on the elytra could further absorb the residual impact energy. In the future, this biological paradigm could be used as a basis for the development of falling/landing techniques for advanced robots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2024.104630 | DOI Listing |
Arch Insect Biochem Physiol
January 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
The activin cascade is activated when a pair of extracellular ligand (Myoglianin, Myo; Activin β, Actβ; Dawdle, Daw) binds to two pairs of transforming growth factor β (TGF) serine-threonine receptor kinases, TGF-β type I (Baboon, Babo) and II receptors. However, the roles of activin way have not well been explored in non-Drosophilid insects. In the present paper, we compared the functions of Activin β (Actβ) ligand and receptor isoform BaboB in post-embryonic development in a defoliating ladybird Henosepilachna vigintioctopunctata.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.
View Article and Find Full Text PDFBull Entomol Res
January 2025
Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan.
Parasitoids employ diverse oviposition strategies to enhance offspring survival and maximise fitness gains from hosts. Ladybird parasitoids, significant natural enemies of ladybirds, have the potential to disrupt biocontrol efforts, yet their biology and ecology remain poorly understood. This study investigated the host-parasitoid interaction among three sympatric larval endoparasitoids of (Coleoptera: Coccinellidae): (Hymenoptera: Encyrtidae), (Hymenoptera: Proctotrupidae) and (Hymenoptera: Eulophidae).
View Article and Find Full Text PDFInsects
December 2024
College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
Insulin-like peptides (ILPs) are important peptide hormones in insects, particularly involved in regulating physiological processes such as growth, development, and reproduction. However, the specific roles of ILPs in the reproduction of natural enemy insects remain unknown. In this study, two ILP genes, and , were cloned and their functions were analyzed in female L.
View Article and Find Full Text PDFBio Protoc
December 2024
Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan.
In this paper, we present a detailed protocol for microinjecting DNA, RNA, or protein solutions into fertilized eggs of the multicolored Asian ladybird beetle, Harmonia axyridis, under a stereomicroscope equipped with an injection apparatus. is an emerging model organism for studying various biological fields, showing intraspecific polymorphisms exhibiting highly diverse color patterns on the elytra. Here, we describe how to rear ladybird beetles in a laboratory and obtain fertilized eggs for microinjection experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!