The determination the forced vital capacity (FVC) and the forced expiratory volume in 1 second (FEV1) during spirometry studies, is at the core of the evaluation of the pulmonary function of patients with respiratory diseases. The Global Lung Function Initiative (GLI) offers the most extensive data set of normal lung functions available, which is currently used to determine the average expected/predicted FEV1 and FVC (V), and their lower limit of normal (LLN, 5th percentile) at any given height and age for women and men. These prediction equations are currently expressed in a rather complex form: V = exp [p+ (a x Ln (height) + (n x Ln (age)) + spline] and LLN = exp(Ln (V) + Ln (1 - 1.645 x S x CV)/S); and are currently used to generate interpretations in commercialized spinographic system. However, as shown in this paper, these equations contain physiological and fundamental allometric information on lung volumes that become obvious when rewriting mean predicted values as a "simple" power function of height and LLN as a percentage of the mean predicted values. We therefore propose to present the equations of prediction obtained from the GLI data using simplified expressions in adults (18-95 years old) to reveal some of their physiological and allometric meaning. Indeed, when predicted FEV1 and FVC (V) were expressed under the form V= αx heightx b(age), the resulting exponent (a) ranges between 2 and 3, transforming the one dimension of a length (size) into a volume, akin to the third-order power (cubic) function of height historically used to predict lung volumes. Only one function, b (age), is necessary to replace all the factors related to age, including the tables of discrete data of spline functions original equations. Similarly, LLN can be expressed as LLN = c (age) xV to become a simple percentage of the predicted values, as a function of age. The equations with their respective new polynomial functions were validated in 52,764 consecutive spirometry tests performed in 2022 in 22,612 men and 30,152 women at the Cleveland Clinic. Using these equations, it become obvious that for both women and men, FEV1/FVC ratio decreases with the size as the exponent of the power function of height is lower for FEV1 than FVC. We conclude that rewriting the GLI predicted equations with simpler formulations restitutes to the GLI data some of their original allometric meaning, without altering the accuracy of their prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resp.2024.104243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!