Following the installation of a protective shade, rapid propagation of microorganisms showing in black and grey colors occurred at Beishiku Temple in Gansu Province of China. This study employed a combination of high-throughput sequencing technology, morphological examinations, and an assessment of the surrounding environmental condition to analyze newly formed microbial disease spots. The investigation unveiled the responsible microorganisms and the instigating factors of the microbial outbreak that subsequently to the erection of the shade. Through comparison of bioinformatics, the ASV method surpasses the OTU method in characterizing community compositional changes by the dominant microbial groups, the phylum Cyanobacteria emerged as the most dominant ones in the microbial community accountable for the post-shade microbial deterioration. The black spot and grey spot are predominantly composed of Mastigocladopsis and Scytonema, respectively. Validation analysis, based on the active RNA-level community results, supported and validated these conclusions. Comparative scrutiny of the microbial community before shade installation and the background environmental data disclosed that the erection of the shade prompted a decrease in temperatures and an increase in humidity within the protected area. Consequently, this spurred the exponential proliferation of indigenous cyanobacteria in the spots observed. The outcomes of this study carry considerable significance in devising preventive conservation strategies for cultural heritage and in managing the process of biodeterioration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.118576 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!