Background: Traumatic brain injury (TBI) is a leading cause of high mortality and disability worldwide. Overactivation of astrocytes and overexpression of inflammatory responses in the injured brain are characteristic pathological features of TBI. Rosiglitazone (ROS) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist known for its anti-inflammatory activity. However, the relationship between the inflammatory response involved in ROS treatment and astrocyte A1 polarization remains unclear.
Objective: This study aimed to investigate whether ROS treatment improves dysfunction and astrocyte A1 polarization induced after TBI and to elucidate the underlying mechanisms of these functions.
Methods: SD rats were randomly divided into sham operation group, TBI group, TBI+ROS group, and TBI+ PPAR-γ antagonist group (GW9662 + TBI). The rat TBI injury model was prepared by the CCI method; brain water content test and wire grip test scores suggested the prognosis; FJB staining showed the changes of ROS on the morphology and number of neurons in the peripheral area of cortical injury; ELISA, immunofluorescence staining, and western blotting analysis revealed the effects of ROS on inflammatory response and astrocyte activation with the degree of A1 polarization after TBI.
Results: Brain water content, inflammatory factor expression, and astrocyte activation in the TBI group were higher than those in the sham-operated group (P < 0.05); compared with the TBI group, the expression of the above indexes in the ROS group was significantly lower (P < 0.05). Compared with the TBI group, PPAR-γ content was significantly higher and C3 content was considerably lower in the ROS group (P < 0.05); compared with the TBI group, PPAR-γ content was significantly lower and C3 content was substantially higher in the inhibitor group (P < 0.05).
Conclusion: ROS can exert neuroprotective effects by inhibiting astrocyte A1 polarization through the PPAR-γ pathway based on the reduction of inflammatory factors and astrocyte activation in the brain after TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2024.110918 | DOI Listing |
Exp Neurol
December 2024
Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye. Electronic address:
Growing evidence reveals that microglia activation and neuroinflammatory responses trigger cell loss in the brain. Histamine is a critical neurotransmitter and promotes inflammatory responses; thus, the histaminergic system is a potential target for treating neurodegenerative processes. JNJ-7777120, a histamine H4 receptor (HR) antagonist, has been shown to alleviate inflammation, brain damage, and behavioral deficits effectively, but there is no report on its role in brain trauma.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China.
Background: The management of high-risk acute myeloid leukaemia (AML) remains challenging, highlighting the need for innovative conditioning strategies beyond current regimens.
Methods: In the present single-arm study, a FACT regimen comprised of low-dose total body irradiation (TBI) with fludarabine, cytarabine and cyclophosphamide was employed to treat cytogenetically high-risk AML patients exhibiting pre-transplant active disease. This clinical trial is registered in the Chinese Clinical Trial Registry with the registration number ChiCTR2000035111.
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
GUTA-CLINIC LLC, Moscow, Russia.
Objective: Evaluation of the safety and effectiveness of Relatox, botulinum toxin type A in patients with focal spasticity (FS) of the upper limb as a result of a cerebrovascular accident (CVA) or traumatic brain injury (TBI).
Material And Methods: A multicenter, prospective, single-blinded, randomized, comparative clinical study included 210 patients of both sexes aged 18-75 years after moderate to severe TBI and CVA in seven sites in the Russian Federation. The patients were randomized into two groups.
Ann Clin Transl Neurol
December 2024
Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Objective: The short-term efficacy of red blood cell (RBC) transfusion among general traumatic brain injury (TBI) patients is unclear.
Methods: We used the MIMIC database to compare the efficacy of liberal (10 g/dL) versus conservative (7 g/dL) transfusion strategy in TBI patients. The outcomes were neurological progression (decrease of Glasgow coma scale (GCS) of at least 2 points) and death within 28 days of ICU admission.
Epilepsia
December 2024
VA Salt Lake City Health Care System, Informatics, Decision-Enhancement and Analytic Sciences Center, Salt Lake City, Utah, USA.
Objective: Traumatic brain injury (TBI) is a significant risk factor for epilepsy, but little work has explored whether risk of epilepsy after TBI may operate through intermediary mechanisms. The objective of this study was to statistically screen for potentially mediating effects among 64 comorbidities for epilepsy risk following TBI among Post-9/11 U.S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!