Quercetin attenuates brain apoptosis in mice with chronic unpredictable mild stress-induced depression.

Behav Brain Res

Department of Psychiatric, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China. Electronic address:

Published: May 2024

Background: Depression is a common psychiatric disorder with limited effective treatments. Research suggests that depression involves apoptosis mechanisms. Quercetin (QUE) has been reported to have anti-apoptotic activities. In this study, we aimed to investigate the effects and mechanisms of QUE in chronic unpredictable mild stress (CUMS)-induced depression.

Methods: After establishing mouse models of CUMS-induced depression, the mice were randomly assigned into four groups: control, CUMS, CUMS+QUE, and CUMS+Fluoxetine (FLX). The body weight of the mice was measured during the study. Then, depression-associated behaviors were evaluated using the sucrose preference test (SPT), novelty suppressed feeding test (NSFT), forced swim test (FST) and tail suspension test (TST). Apoptosis in the hippocampus and prefrontal cortex was determined using flow cytometry. Bcl-2 and Nrf2 protein expressions in the hippocampus and prefrontal cortex were also detected. Furthermore, Western blot was used to measure the protein levels of p-ERK, ERK, p-CREB, CREB, and Nrf2 in brain tissues.

Results: QUE or FLX administration increased the body weight of the CUMS mice. Behavioral tests indicated that CUMS mice developed a state of depression, but QUE or FLX treatment improved their depression-associated behaviors. Meanwhile, QUE or FLX treatment decreased apoptosis in the hippocampus and prefrontal cortex. Furthermore, the decreased Nrf2 protein expression, ERK and CREB phosphorylation in CUMS group were enhanced by QUE or FLX administration.

Conclusion: QUE could attenuate brain apoptosis in mice with CUMS-induced depression, and the mechanism may be related to the ERK/Nrf2 pathway, indicating that QUE could be a potential treatment for depression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2024.114934DOI Listing

Publication Analysis

Top Keywords

hippocampus prefrontal
12
prefrontal cortex
12
brain apoptosis
8
apoptosis mice
8
chronic unpredictable
8
unpredictable mild
8
cums-induced depression
8
body weight
8
depression-associated behaviors
8
apoptosis hippocampus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!