Accurate redox state indication by in situ derivatization with N-ethylmaleimide - Profiling of transsulfuration and glutathione pathway metabolites by UPLC-MS/MS.

J Chromatogr B Analyt Technol Biomed Life Sci

Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.

Published: April 2024

Background: Reduced and oxidized glutathione play an important role for the intracellular detoxification of reactive oxygen species. The iron-dependent formation of such reactive oxygen species in conjunction with the inhibition of the redox-balancing enzyme glutathione peroxidase 4 underlie an imbalance in the cellular redox state, thereby resulting in a non-apoptotic form of cell death, defined as ferroptosis, which is relevant in several pathologies.

Methods: Here we present a rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based method providing the accurate quantification of 12 glutathione pathway metabolites after in situ derivatization with N-Ethylmaleimide (NEM). The method was validated regards linearity, recovery and accuracy as well as precision. The assay includes glutathione and its oxidized form glutathione disulfide. Furthermore, the related precursors cysteine, cystine, glutamic acid, γ-glutamylcysteine and cysteinylglycine, biomarkers of protein crosslinking such as cystathionine and lanthionine, as well as metabolites of the transsulfuration pathway, methionine, homocysteine and serine are simultaneously determined.

Results: Twelve glutathione pathway metabolites were simultaneously analyzed in four different human cell line extracts within a total LC run time of 5.5 min. Interday coefficients of variation (1.7 % to 12.0 %), the mean observed accuracy (100.0 % ± 5.2 %), linear quantification ranges over three orders of magnitude for all analytes and sufficient metabolite stability after NEM-derivatization demonstrate method reliability. Immediate derivatization with NEM at cell harvesting prevents autooxidation of glutathione, ensures accurate results for the GSH/GSSG redox ratio and thereby allows interpretation of cellular redox state.

Conclusion: The described UPLC-MS/MS method provides a sensitive and selective tool for a fast and simultaneous analysis of glutathione pathway metabolites, its direct precursors and related compounds. Assay performance characteristics demonstrate the suitability of the method for applications in different cell cultures. Therefore, by providing glutathione related functional metabolic readouts, the method enables investigations in mechanisms of ferroptosis and alterations in oxidative stress levels in several pathophysiologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2024.124062DOI Listing

Publication Analysis

Top Keywords

glutathione pathway
16
pathway metabolites
16
glutathione
10
redox state
8
situ derivatization
8
derivatization n-ethylmaleimide
8
reactive oxygen
8
oxygen species
8
cellular redox
8
method
6

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

Effects of rumen-degradable starch on lactation performance, gastrointestinal fermentation, and plasma metabolomic in dairy cows.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:

This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.

View Article and Find Full Text PDF

Timosaponin B II as a novel KEAP1-NRF2 inhibitor to alleviate alcoholic liver disease:Receptor structure-based virtual screening and biological evaluation.

Chem Biol Interact

January 2025

Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032,P. R. China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China. Electronic address:

Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor.

View Article and Find Full Text PDF

Energy metabolism, antioxidant defense system, metal transport, and ion homeostasis are key contributors to Cd tolerance in SSSL derived from wild rice.

J Hazard Mater

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!