Background: Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways.
Methods: Immunohistochemistry and lung cancer tissue microarray were used to verify the expression of RGS20 between NSCLC patients. CCK8 and cell cloning were conducted to determine the proliferation ability of H1299 and Anip973 cells in vitro. Furthermore, Transcriptome sequencing was performed to show enrichment genes and pathways. Immunofluorescence was used to detect the translocation changes of YAP to nucleus. Western blotting demonstrated different expressions of autophagy and the Hippo-PKA signal pathway. In vitro and in vivo experiments verified whether overexpression of RGS20 affect the proliferation and autophagy of NSCLC through regulating the Hippo pathway.
Results: The higher RGS20 expression was found to be significantly correlated with a poorer five-year survival rate. Further, RGS20 accelerated cell proliferation by increasing autophagy. Transcriptomic sequencing suggested the involvement of the Hippo signaling pathway in the action of RGS20 in NSCLC. RGS20 activation reduced YAP phosphorylation and facilitated its nuclear translocation. Remarkably, inhibiting Hippo signaling with GA-017 promoted cell proliferation and activated autophagy in RGS20 knock-down cells. However, forskolin, a GPCR activator, increased YAP phosphorylation and reversed the promoting effect of RGS20 in RGS20-overexpressing cells. Lastly, in vivo experiments further confirmed role of RGS20 in aggravating tumorigenicity, as its overexpression increased NSCLC cell proliferation.
Conclusion: Our findings indicate that RGS20 drives NSCLC cell proliferation by triggering autophagy via the inhibition of PKA-Hippo signaling. These insights support the role of RGS20 as a promising novel molecular marker and a target for future targeted therapies in lung cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909273 | PMC |
http://dx.doi.org/10.1186/s12935-024-03282-9 | DOI Listing |
Cancer Cell Int
September 2024
Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Proc Natl Acad Sci U S A
July 2024
Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China.
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, but the underlying molecular mechanisms remain largely unclear. The transcription factor (TF) specificity protein 1 (SP1) plays a crucial role in the development of various cancers, including LUAD. Recent studies have indicated that master TFs may form phase-separated macromolecular condensates to promote super-enhancer (SE) assembly and oncogene expression.
View Article and Find Full Text PDFBiochem Genet
April 2024
Department of Obstetrics and Reproductive Medicine Center, The Affiliated Hospital of Yunnan University, Kunming, 650021, Yunnan, China.
Emanuel syndrome is a rare autosomal disorder characterized by microcephaly, heart defects, cleft palate and developmental delay. However, there is a lack of specific prenatal screening for Emanuel syndrome. To screen for early diagnostic marker genes in fetuses with karyotype+der[22]t(11;22)(q23;q11) of Emanuel syndrome.
View Article and Find Full Text PDFCancer Cell Int
March 2024
School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China.
Background: Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!