A novel and sustainable composite of L@PSAC for superior removal of pharmaceuticals from different water matrices: Production, characterization, and application.

Environ Res

School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, L3 2ET, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Al-Hillah, Iraq; Dijlah University College, Baghdad, Iraq.

Published: June 2024

This study endeavors to develop cost-effective environmentally friendly technology for removing harmful residual pharmaceuticals from water and wastewater by utilizing the effective adsorption of pistachio shell (PS) biochar and the degradation potency of laccase immobilized on the biochar (L@PSAC). The carbonatization and activation of the shells were optimized regarding temperature, time, and NHNO/PS ratio. This step yielded an optimum PS biochar (PSAC) with the highest porosity and surface area treated at 700 °C for 3 h using an NHNO/PS ratio of 3% wt. The immobilization of laccase onto PSAC (L@PSAC) was at its best level at pH 5, 60 U/g, and 30 °C. The optimum L@PSAC maintained a high level of enzyme activity over two months. Almost a complete removal (>99%) of diclofenac, carbamazepine, and ciprofloxacin in Milli-Q (MQ) water and wastewater was achieved. Adsorption was responsible for >80% of the removal and the rest was facilitated by laccase degradation. L@PSAC maintained effective removal of pharmaceuticals of ≥60% for up to six treatment cycles underscoring the promising application of this material for wastewater treatment. These results indicate that activated carbon derived from the pistachio shell could potentially be utilized as a carrier and adsorbent to efficiently remove pharmaceutical compounds. This enzymatic physical elimination approach has the potential to be used on a large-scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118565DOI Listing

Publication Analysis

Top Keywords

removal pharmaceuticals
8
pharmaceuticals water
8
water wastewater
8
pistachio shell
8
nhno/ps ratio
8
l@psac maintained
8
l@psac
5
novel sustainable
4
sustainable composite
4
composite l@psac
4

Similar Publications

Background: Mismatch between osteochondral allograft (OCA) donor and recipient sex has been shown to negatively affect outcomes. This study accounts for additional donor variables and clinically relevant outcomes.

Purpose: To evaluate whether donor sex, age, donor-recipient sex mismatch, and duration of graft storage affect clinical outcomes and failure rates after knee OCA transplantation.

View Article and Find Full Text PDF

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Serine-modified silver nanoparticle porous spray membrane: A novel approach to wound infection prevention and inflammation reduction.

Int J Pharm

January 2025

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China. Electronic address:

Traditional wound care preparations frequently face challenges such as complex care protocols, poor patient compliance, limited skin permeability, lack of aesthetics, and inconvenience, in addition to the risk of bacterial infection. We developed a spray film preparation containing nanocellulose and L-serine modified nanosilver, capable of rapidly forming a transparent film on the skin within minutes of application. The incorporation of nanocellulose imparted protective, moisturizing, and breathable properties to the film, allowing for easy removal after use.

View Article and Find Full Text PDF

Analyzing the TotalSegmentator for facial feature removal in head CT scans.

Radiography (Lond)

January 2025

Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.

Background: Facial recognition technology in medical imaging, particularly with head scans, poses privacy risks due to identifiable facial features. This study evaluates the use of facial recognition software in identifying facial features from head CT scans and explores a defacing pipeline using TotalSegmentator to reduce re-identification risks while preserving data integrity for research.

Methods: 1404 high-quality renderings from the UCLH EIT Stroke dataset, both with and without defacing were analysed.

View Article and Find Full Text PDF

Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water.

J Environ Manage

January 2025

Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:

The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!