Short-chain fatty acids (SCFAs) are bioactive lipids that are released into the colon as a metabolite of bacterial fermentation of dietary fibers. Beyond their function in the gastrointestinal tract, SCFAs can also have effects inthe brain, as a part of the gut-brain axis. Recent investigations into potential therapeutic interventions via the manipulation of the gut microbiome-and thus their SCFA metabolites-has been emerging as a new branch of personalized medicine,especially for mental health conditions. The current study sought to measure and localize SCFA receptors in the mouse brain. Two cell types have been implicated in the gut-brain axis: microglia and serotonergic neurons. We used fluorescentin situhybridization in brain sections from mice fed diets with different compositions of fat and fiber to quantify the mRNA levels of known gene markers of these two cell types and colocalize each with mRNA for free fatty acid receptors that bind SCFAs. We focused onmicroglia in the hippocampus and the serotonergic neurons of the dorsal raphe. We found high colocalization of SCFA receptors in both microglia and serotonergic neurons and discovered that SCFA receptor expression in the dorsal raphe is driven by fiber solubility, while SCFA receptor expression in the hippocampus is driven by fiber amount. Higher dietary fiber was associated with decreased tyrosine hydroxylase expression. Thus, our results indicate that the amount and solubility of dietary fiber can change gene expression in the brain's microglia and serotonin neurons, potentially via sensitivity to circulating levels of SCFAs produced in the gut.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2024.02.027 | DOI Listing |
Zool Res
January 2025
School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:
Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia.
The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone.
View Article and Find Full Text PDFJ Pharmacol Sci
February 2025
Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan; Project for Neural Networks, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan. Electronic address:
Major depressive disorder (MDD) is among the most common mental disorders worldwide and is characterized by dysregulated reward processing associated with anhedonia. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD; however, their onset of action is delayed. Recent reports have shown that serotonin neurons in the dorsal raphe nucleus (DRN) are activated by rewards and play a vital role in reward processing.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:
Microplastics are pervasive environmental contaminants found across diverse ecosystems, inducing toxic effects in a wide range of organisms. However, the neurotoxic effects of thermally degraded polystyrene (T-PS) and its underlying mechanisms remain poorly unexplored. In this study, Caenorhabditis elegans was exposed to environmentally relevant concentrations of T-PS (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!