A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physical properties of cellulose nanocrystal/magnesium oxide/chitosan transparent composite films for packaging applications. | LitMetric

Physical properties of cellulose nanocrystal/magnesium oxide/chitosan transparent composite films for packaging applications.

Int J Biol Macromol

Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin, Republic of Korea. Electronic address:

Published: April 2024

Hitherto unreported hybrid nanofillers (CNC:MgO) reinforced chitosan (CTS) based composite (CNC:MgO)/CTS films were synthesized using a solution-casting blend technique and synergistic effect of hybrid nanofiller in terms of properties enhancement were investigated. Optical microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) were used to characterize the films. The hybrid nanofiller considerably changed the transparency and color of the CTS films. The tensile strengths of (3 wt%) CNC/CTS, (3 wt%) MgO/CTS, (1:1)(CNC:MgO)/CTS, (1:2)(CNC:MgO)/CTS and (2:1)(CNC:MgO)/CTS films were 27.49 %, 35.60 %, 91.62 %, 38.22 %, and 29.32 % higher than pristine CTS films respectively, while the water vapor permeation were 28.21 %, 30.77 %, 34.62 %, 38.46 %, and 37.44 % lower than pristine CTS film, respectively. Moreover, the CTS composite films exhibited an improvement in overall water barrier properties after incorporating hybrid nanofillers. Our observations suggest that chitosan-based hybrid nanofiller composite films are a good replacement for plastic-based packaging materials within the food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130560DOI Listing

Publication Analysis

Top Keywords

composite films
12
hybrid nanofiller
12
films
8
hybrid nanofillers
8
electron microscopy
8
cts films
8
pristine cts
8
hybrid
5
cts
5
physical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!