Beta-glucans possess the ability of retarding starch retrogradation. However, β-glucans from different sources might show various influences on retrogradation process and the structure-function relationships of β-glucans related to the feature still remains unclear. In the study, the β-glucans from oat (OG), highland barley (HBG), and yeast (YG) were selected. Each β-glucans formed aggregate as observed by atomic force microscopy. OG and HBG with a lower M aggregated more obviously and exhibited higher intrinsic and apparent viscosity. The two β-glucans showed more restraining effect on the short-term starch retrogradation in the sol-like test system (RVA) and the long-term starch retrogradation in the gel-like test system (DSC). However, YG with a higher M exerted a greater retarding effect on the short-term starch retrogradation in gel-like test systems (Mixolab and rheology). LF-NMR indicated that OG and HBG increased the population of less-bound water by wrapping around the starch. In summary, the structural characteristics of β-glucan (M and aggregation state) and experiment condition (solid content) jointly influenced starch retrogradation, because a lower Mw and higher aggregation capacity β-glucan interacted more readily with starch and inhibited more starch re-association due to the higher diffusion rate in the sol-like system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130561DOI Listing

Publication Analysis

Top Keywords

starch retrogradation
24
starch
9
structural characteristics
8
β-glucans sources
8
sources influences
8
long-term starch
8
short-term starch
8
test system
8
retrogradation gel-like
8
gel-like test
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!