Microbial biodegradation of commercially available poly(butylene adipate-co-terephthalate)-polylactic acid-thermoplastic starch based bio-plastic has been pursued at high temperatures exceeding 55 °C. Herein, we first reported three newly isolated fungal strains from farmland soil samples of Republic of Korea namely, Pyrenochaetopsis sp. strain K2, Staphylotrichum sp. S2-1, and Humicola sp. strain S2-3 were capable of degrading a commercial bio-plastic film with degradation rates of 9.5, 8.6, and 12.2%, respectively after 3 months incubation at ambient conditions. Scanning electron microscopy (SEM) analyses showed that bio-plastic film was extensively fragmented with severe cracking on the surface structure after incubation with isolated fungal strains. X-ray diffraction (XRD) analysis also revealed that high crystallinity of the commercial bio-plastic film was significantly decreased after degradation by fungal strains. Liquid chromatography-mass spectrometry (LC-MS) analyses of the fungal culture supernatants containing the bio-plastic film showed the peaks for adipic acid, terephthalic acid (TPA), and terephthalate-butylene (TB) as major metabolites, suggesting cleavage of ester bonds and accumulation of TPA. Furthermore, a consortium of fungal strain K2 with TPA degrading bacterium Pigmentiphaga sp. strain P3-2 isolated from the same sampling site exhibited faster degradation rate of the bio-plastic film within 1 month of incubation with achieving complete biodegradation of accumulated TPA. We assume that the extracellular lipase activity presented in the fungal cultures could hydrolyze the ester bonds of PBAT component of bio-plastic film. Taken together, the fungal and bacterial consortium investigated herein could be beneficial for efficient biodegradation of the commercial bio-plastic film at ambient conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141554DOI Listing

Publication Analysis

Top Keywords

bio-plastic film
32
commercial bio-plastic
16
ambient conditions
12
fungal strains
12
bio-plastic
9
fungal
8
polybutylene adipate-co-terephthalate-polylactic
8
adipate-co-terephthalate-polylactic acid-thermoplastic
8
acid-thermoplastic starch
8
starch based
8

Similar Publications

Microbial biodegradation of commercially available poly(butylene adipate-co-terephthalate)-polylactic acid-thermoplastic starch based bio-plastic has been pursued at high temperatures exceeding 55 °C. Herein, we first reported three newly isolated fungal strains from farmland soil samples of Republic of Korea namely, Pyrenochaetopsis sp. strain K2, Staphylotrichum sp.

View Article and Find Full Text PDF

Biobased and biodegradable polymeric materials are a sustainable alternative to the conventional plastics used in food packaging. This study investigated the possible effect of biobased cling films derived from renewable and circular and sustainable sources on key cheese sensory parameters (appearance and odor) able to influence consumer acceptance or rejection of a food product over time. For this purpose, a semi-hard cheese was selected as food model and stored for 14 days at 5 °C wrapped with five cling films: two bio-plastic materials from renewable circular and sustainable sources (R-BP1 and R-BP2), one bio-plastic film from a non-renewable source (NR-BP), and two conventional cling films (LDPE and PVC).

View Article and Find Full Text PDF

Cotton gin trash (CGT), a lignocellulosic waste generated during cotton fibre processing, has recently received significant attention for production of composite bio-plastics. However, earlier studies were limited to either with biodegradable polymers, through small-scale solution-casting method, or using industrially adaptable extrusion route, but with non-biodegradable polymers. In this study, a scale-up production of completely biodegradable CGT composite plastic film with adjustable biodegradation rate is proposed.

View Article and Find Full Text PDF

High-performance cellulose acetate-based gas barrier films via tailoring reduced graphene oxide nanosheets.

Int J Biol Macromol

June 2022

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Improving the gas molecule barrier performance and structural stability of bio-plastic films dramatically contribute to packaging and protective fields. Herein, we proposed a novel nanocomposite film consisting of cellulose acetate (CA)/polyethyleneimine (PEI)/reduced graphene oxide (rGO)-NiCoFeO) with high gas barrier property by applying "molecular glue" and "nano-patching" strategies. Systematical investigations demonstrated that the CA/rGO interfacial interaction was effectively enhanced due to the "molecular glue" role of PEI chains via physical/chemical bonds and the defective regions in rGO plane were nano-patched through hydrophilic interactions between edged oxygen-containing functional groups and ultrafine NiCoFeO nanoparticles (~3 nm).

View Article and Find Full Text PDF

The use of bio-plastic-based packaging as an alternative to conventional plastic packaging is increasing. Among the plethora of different bio-based plastics, the most relevant ones are those that, at the end of their life, can be treated with the organic fraction of municipal solid waste. Even in these cases, their impact on the waste processing and recycling is not always positive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!