The practice of returning straw to agricultural fields is a globally employed technique. Such agricultural fields also receive a significant amount of nitrogen (N) and phosphorus (P) fertilizers, because these two macronutrients are essential for plant growth and development. However, the consequences of such macronutrients input on straw decomposition, soil dissolved organic matter (DOM), key microbes, and lignocellulolytic enzymes are still unclear. In a similar aim, we designed a long-term straw returning study without and with different N and P nutrient supplementation: CK (NP), T1 (NP), T2 (NP), T3 (NP), T4 (NP), T5 (NP), T6 (NP), and T7 (NP), and evaluated their impact on rice and oilseed rape yield, soil DOM, enzymes, lignocellulose content, microbial diversity, and composition. We found straw returning improved overall yield in all treatments and T7 showed the highest yield for oilseed rape (30.31-38.87 g/plant) and rice (9.14-9.91 t/ha) during five-years of study. The fertilizer application showed a significant impact on soil physicochemical properties, such as water holding capacity and soil porosity decreased, and bulk density increased in fertilized treatments, as compared to CK. Similarly, significantly low OM, cellulose, hemicellulose, and lignin content were found in T7, T4, T3, and T2, while high values were found in CK and T5, respectively. The fluorescence excitation-emission matrix spectra of DOM of different treatments revealed that T3, T7, T4, and T6 showed high peak M (microbial by-products), peak A and peak C (humic acid-like) as compared to others. The microbial composition was also distinctive in each treatment and a high relative abundance of Chloroflexi, Actinobacteriota, Ascomycota, and Basidiomycota were found in T2 and T3 treatments, respectively. These findings indicate that the decomposition of straw in the agricultural field was dependent on nutrients input, which facilitated key microbial growth and impacted positively on lignocellulolytic enzymes, which further aided the breakdown of all components of straw in the field efficiently. On the other hand, high input of chemical based fertilizers to soil can lead to several environmental issues, such as nutrient imbalance, nutrient runoff, soil pH change and changes in microbial activities. Keeping that in consideration, we recommend moderate fertilizer dosage (NP) in such fields to achieve higher decomposition of crop straw with a small yield compromise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.120460DOI Listing

Publication Analysis

Top Keywords

straw agricultural
8
agricultural fields
8
lignocellulolytic enzymes
8
straw returning
8
oilseed rape
8
straw
7
soil
6
microbial
5
degradation agricultural
4
agricultural waste
4

Similar Publications

The shelf-life of grapes is reduced due to infection by various pathogens and mechanical damage, which consequently limits their availability on the market and results huge economic losses. Active packaging films are expected to overcome this problem. In this study, packaging films (CMC-Gly-PMA) were developed using wheat straw-based carboxymethyl cellulose (2 %), glycerol (30 % w/w of CMC) and polymalate (0.

View Article and Find Full Text PDF

Engineering the biosynthetic pathway of bacterial cellulose in rice to improve the performance of straw-derived paper.

Plant Commun

January 2025

Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding,China, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms ,Ministry of Agriculture and Rural Affairs, China. Electronic address:

View Article and Find Full Text PDF

Assessing Virus Survival in African Swine Fever Virus-Contaminated Materials-Implications for Indirect Virus Transmission.

Viruses

January 2025

Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.

Introduction of African swine fever virus (ASFV) into pig herds can occur via virus-contaminated feed or other objects. Knowledge about ASFV survival in different matrices and under different conditions is required to understand indirect virus transmission. Maintenance of ASFV infectivity can occur for extended periods outside pigs.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Phenotypic Profiling of Selected Cellulolytic Strains to Develop a Crop Residue-Decomposing Bacterial Consortium.

Microorganisms

January 2025

Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania.

Slow decomposition rates of cereal crop residues can lead to agronomic challenges, such as nutrient immobilization, delayed soil warming, and increased pest pressures. In this regard, microbial inoculation with efficient strains offers a viable and eco-friendly solution to accelerating the decomposition process of crop residues. However, this solution often focuses mostly on selecting microorganisms based on the appropriate enzymic capabilities and neglects the metabolic versatility required to utilize both structural and non-structural components of residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!