Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The rapid growth of omics technologies has led to the use of bioinformatics as a powerful tool for unravelling scientific puzzles. However, the obstacles of bioinformatics are compounded by the complexity of data processing and the distinct nature of omics data types, particularly in terms of visualization and statistics.
Objectives: We developed a comprehensive and free platform, CFViSA, to facilitate effortless visualization and statistical analysis of omics data by the scientific community.
Methods: CFViSA was constructed using the Scala programming language and utilizes the AKKA toolkit for the web server and MySQL for the database server. The visualization and statistical analysis were performed with the R program.
Results: CFViSA integrates two omics data analysis pipelines (microbiome and transcriptome analysis) and an extensive array of 79 analysis tools spanning simple sequence processing, visualization, and statistics available for various omics data, including microbiome and transcriptome data. CFViSA starts from an analysis interface, paralleling a demonstration full course to help users understand operating principles and scientifically set the analysis parameters. Once analysis is conducted, users can enter the task history interface for figure adjustments, and then a complete series of results, including statistics, feature tables and figures. All the graphic layouts were printed with necessary statistics and a traceback function recording the options for analysis and visualization; these statistics were excluded from the five competing methods.
Conclusion: CFViSA is a user-friendly bioinformatics cloud platform with detailed guidelines for integrating functions in multi-omics analysis with real-time visualization adjustment and complete series of results provision. CFViSA is available at http://www.cloud.biomicroclass.com/en/CFViSA/.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!