TSHR signaling promotes hippocampal dependent memory formation through modulating Wnt5a/β-catenin mediated neurogenesis.

Biochem Biophys Res Commun

Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China. Electronic address:

Published: April 2024

Subclinical hyperthyroidism is defined biochemically as a low or undetectable thyroid-stimulating hormone (TSH) with normal thyroid hormone levels. Low TSHR signaling is considered to associate with cognitive impairment. However, the underlying molecular mechanism by which TSHR signaling modulates memory is poorly understood. In this study, we found that Tshr-deficient in the hippocampal neurons impairs the learning and memory abilities of mice, accompanying by a decline in the number of newborn neurons. Notably, Tshr ablation in the hippocampus decreases the expression of Wnt5a, thereby inactivating the β-catenin signaling pathway to reduce the neurogenesis. Conversely, activating of the Wnt/β-catenin pathway by the agonist SKL2001 results in an increase in hippocampal neurogenesis, resulting in the amelioration in the deficits of memory caused by Tshr deletion. Understanding how TSHR signaling in the hippocampus regulates memory provides insights into subclinical hyperthyroidism affecting cognitive function and will suggest ways to rationally design interventions for neurocognitive disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.149723DOI Listing

Publication Analysis

Top Keywords

tshr signaling
16
subclinical hyperthyroidism
8
tshr
6
memory
5
signaling promotes
4
promotes hippocampal
4
hippocampal dependent
4
dependent memory
4
memory formation
4
formation modulating
4

Similar Publications

The pathogenesis of Thyroid Eye Disease (TED) has been suggested as due to signal enhancement in orbital fibroblasts as a result of autoantibody-induced, synergistic, interaction between the TSH receptor (TSHR) and the IGF-1 receptor (IGF-1R). This interaction has been explained by a "receptor cross talk", mediated via β-arrestin binding. Here, we have examined if this interaction can be mediated via direct receptor contact using modeling and experimental approaches.

View Article and Find Full Text PDF

Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome.

View Article and Find Full Text PDF

The glycoprotein hormones of humans, produced in the pituitary and acting through receptors in the gonads to support reproduction and in the thyroid gland for metabolism, have co-evolved from invertebrate counterparts. These hormones are heterodimeric cystine-knot proteins; and their receptors bind the cognate hormone at an extracellular domain and transmit the signal of this binding through a transmembrane domain that interacts with a heterotrimeric G protein. Structures determined for the human receptors as isolated for cryogenic electron microscopy (cryo-EM) are all monomeric despite compelling evidence for their functioning as dimers.

View Article and Find Full Text PDF

To elucidate the role of IGF1R inhibition in the pathogenesis of Graves' orbitopathy (GO), the effects of linsitinib (Lins) on a recombinant human TSHR antibody (M22) and IGF1 to activate TSHR and IGF1R of human orbital fibroblasts (HOFs) obtained from patients without GO (HOFs) and patients with GO (GHOFs) were studied using in vitro three-dimensional (3D) spheroid models in addition to their 2D planar cell culture. For this purpose, we evaluated 1) cellular metabolic functions by using a seahorse bioanalyzer (2D), 2) physical properties including size and stiffness of 3D spheroids, and mRNA expression of several extracellular matrix (ECM) proteins, their modulators (CCL2 LOX, CTGF, MMPs), ACTA2 and inflammatory cytokines (IL1β, IL6). Administration of IGF1 and M22 induced increases of cellular metabolic functions with the effect on HOFs being much more potent than the effect on GHOFs, suggesting that IGF1R and TSHR of GHOFs may already be stimulated.

View Article and Find Full Text PDF

Thyroid-associated ophthalmopathy (TAO), an autoimmune disorder of the retrobulbar tissue, is present in up to 50 percent of Graves's hyperthyroidism patients. Insulin-like growth factor 1 receptor (IGF-1R) has received attention as a target for the development of therapeutic agent for TAO. IGF-1R and TSHR (thyroid stimulating hormone receptor) interact with each other to form a physical or functional complex, further promoting the development of TAO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!