The energy stability and electronic structural of graphene and defective graphene oxide (GO) parallel to the surface of LiFePO (010) were theoretically investigated by using first-principles density functional theory calculations within the DFT + U framework. The calculated formation energy shows that GO coating on the surface of LiFePO (010) is energetically favorable and has higher bond strength compared to graphene. The calculation of the electronic structure indicates that the emergence of band in-gap states originates from graphene coating, with adsorbed O atoms contributing significantly above the Fermi level. Electron density difference indicate that GO stands on the LFP (010) surface through C-O and Fe-O bonds, rather than relying on van der Waals forces placed parallel to the LFP crystal, with the chemical bond at the LFP/GO interface (Fe-O-C) both anchoring the coated carbon layer and promoting electron conductivity at the interface. In addition, LFP/GO shows superior electrochemical performance, Atomic Populations suggests that the average Fe-O bonding on the surface of LiFePO (010) was clearly changed after graphene or GO coating, which led to the expansion of Li channels and favored the migration insertion and extraction of Li.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2024.108731DOI Listing

Publication Analysis

Top Keywords

surface lifepo
12
lifepo 010
12
graphene defective
8
defective graphene
8
graphene oxide
8
graphene coating
8
graphene
7
first-principles study
4
lifepo
4
study lifepo
4

Similar Publications

Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect.

Adv Mater

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.

Article Synopsis
  • The study highlights the impressive lithium ionic conductivity achieved using graphene oxide laminar membranes, which significantly exceeds that of traditional lithium-ion electrolytes.
  • At 170 mS cm, the nanoconfined lithium electrolyte demonstrates extraordinary performance, maintaining useful conductivity even at extremely low temperatures.
  • The findings suggest that the enhanced ion transport is due to unique layer distribution effects in the nanochannels, potentially revolutionizing energy storage technologies by integrating these channels into lithium battery components.
View Article and Find Full Text PDF

In situ Polymerized Solid-State Electrolyte Enabling Inorganic-Organic Dual-Layered SEI Film for Stable Lithium Metal Batteries.

Small

January 2025

School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510006, P. R. China.

In situ polymerization of cyclic ethers is a promising strategy to construct solid-state lithium (Li) metal batteries with high energy density and safety. However, their practical applications are plagued by the unsatisfactory electrochemical properties of polymer electrolytes and the unstable solid electrolyte interphase (SEI). Herein, organic perfluorodecanoic acid (PFDA) is proposed as a new initiator to polymerize 1,3-dioxolane electrolyte (PDOL), which enables the as-obtained PDOL electrolyte to deliver greatly enhanced ionic conductivity and broadened electrochemical window.

View Article and Find Full Text PDF

Functionalized separators are expected to serve as protective barriers to conquer the lithium dendrite penetration in lithium metal batteries. Herein, a novel self-supporting separator material has been successfully synthesized based on the cellulose acetate and Keggin-type polyoxometalate HPMoO·HO (denoted as CA/PMo). The incorporation of PMo facilitates the transformation of the original finger-like structure of the CA separator into a uniform three-dimensional porous grid architecture, which is more effective in inhibiting the growth of lithium dendrites.

View Article and Find Full Text PDF
Article Synopsis
  • Slow lithium-ion transport and uneven lithium distribution on anode surfaces contribute to lithium dendrite formation.
  • A new copolymer, P35, is introduced as an electrolyte additive to promote uniform lithium deposition by preferentially adsorbing on lithium foil and interacting with lithium salt anions.
  • Cells with P35 show improved performance, including better charge rates, reduced polarization, and smoother lithium deposition compared to those without the additive.
View Article and Find Full Text PDF

Interfacial Metal-Solvent Chelation for Direct Regeneration of LiFePO Cathode Black Mass.

Adv Mater

December 2024

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

Direct regeneration of spent lithium-ion batteries presents a promising approach to effectively reuse valuable resources and benefit the environment. Unlike controlled laboratory conditions that commonly facilitate impurity purification and minimize structural damage, the LiFePO cathode black mass faces significant interfacial challenges, including structure deterioration, cathode-electrolyte interphase residues, and damage from storage procedures, which hinder lithium replenishment and structure regeneration. Here, a metal-solvent chelation reaction using a lithium acetylacetonate solution is introduced to address these challenges under ambient conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!