The Negombo Lagoon is a coastal lagoon influenced by local communities that introduce waste into its ecosystem. This study examined seven sewage entry points, out of which five sites were chosen for oyster sampling based on availability. Physicochemical and microbiological parameters of water (measured in triplicate at each site, n = 84) and oyster samples (total length, TL > 6 cm, n = 30) were assessed. Variation in regional coliform contamination was analyzed employing a one-way analysis of variance (ANOVA). Results indicated that the northern part of the lagoon exceeded recommended coliform thresholds for swimming (total coliform concentration (TCC) < 126 most probable number (MPN)) and seafood consumption (TCC < 100 MPN/g), indicating the presence of Escherichia coli. Water quality indices affirmed fecal pollution, except in the southern part of the lagoon. Furthermore, the study found high oyster consumption (76.7 %), elucidating that oysters from the northern part of Negombo Lagoon pose health risks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.116189DOI Listing

Publication Analysis

Top Keywords

negombo lagoon
8
lagoon
5
human health
4
health risk
4
risk attributed
4
attributed consumption
4
consumption seafood
4
seafood recreation
4
recreation swimming
4
swimming negombo
4

Similar Publications

The Negombo Lagoon is a coastal lagoon influenced by local communities that introduce waste into its ecosystem. This study examined seven sewage entry points, out of which five sites were chosen for oyster sampling based on availability. Physicochemical and microbiological parameters of water (measured in triplicate at each site, n = 84) and oyster samples (total length, TL > 6 cm, n = 30) were assessed.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the severe impact of marine debris on mangrove ecosystems in Negombo lagoon, Sri Lanka, where approximately 9.83% of the substrate is covered by debris, primarily single-use plastics.
  • Higher levels of debris were found at Kadolkele (18.80%) compared to Molekadolwetiya (0.85%), indicating significant pollution in these areas.
  • The research demonstrates that marine debris correlates with physical damage to mangrove roots and seedlings, suggesting urgent need for remedial actions to reduce and remove debris to protect these crucial coastal habitats.
View Article and Find Full Text PDF

Fungal involvement in the biodeterioration of low-density polyethylene (LDPE) has received great attention in recent years. Among diverse groups of fungi, endolichenic fungi (ELF) are adapted to thrive in resource-limited conditions. The present study was designed to investigate the potential of mangrove-associated ELF, in the biodeterioration of LDPE and to quantify key-depolymerizing enzymes.

View Article and Find Full Text PDF

Exploring untapped microbial potentials in previously uncharted environments has become crucial in discovering novel secondary metabolites and enzymes for biotechnological applications. Among prokaryotes, actinomycetes are well recognized for producing a vast range of secondary metabolites and extracellular enzymes. In the present study, we have used surface sediments from 'Kadolkele' mangrove ecosystem located in the Negombo lagoon area, Sri Lanka, to isolate actinomycetes with bioactive potentials.

View Article and Find Full Text PDF

Climate change (CC) is likely to affect the thousands of bar-built or barrier estuaries (here referred to as Small tidal inlets - STIs) around the world. Any such CC impacts on the stability of STIs, which governs the dynamics of STIs as well as that of the inlet-adjacent coastline, can result in significant socio-economic consequences due to the heavy human utilisation of these systems and their surrounds. This article demonstrates the application of a process based snap-shot modelling approach, using the coastal morphodynamic model , to 3 case study sites representing the 3 main STI types; Permanently open, locationally stable inlets (Type 1), Permanently open, alongshore migrating inlets (Type 2) and Seasonally/Intermittently open, locationally stable inlets (Type 3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!