Impact of coconut-fiber biochar on lead translocation, accumulation, and detoxification mechanisms in a soil-rice system under elevated lead stress.

J Hazard Mater

School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China. Electronic address:

Published: May 2024

Biochar, an environmentally friendly material, was found to passivate lead (Pb) in contaminated soil effectively. This study utilized spectroscopic investigations and partial least squares path modeling (PLS-PM) analysis to examine the impact of coconut-fiber biochar (CFB) on the translocation, accumulation, and detoxification mechanisms of Pb in soil-rice systems. The results demonstrated a significant decrease (p < 0.05) in bioavailable Pb concentration in paddy soils with CFB amendment, as well as reduced Pb concentrations in rice roots, shoots, and brown rice. Synchrotron-based micro X-ray fluorescence analyses revealed that CFB application inhibited the migration of Pb to the rhizospheric soil region, leading to reduced Pb uptake by rice roots. Additionally, the CFB treatment decreased Pb concentrations in the cellular protoplasm of both roots and shoots, and enhanced the activity of antioxidant enzymes in rice plants, improving their Pb stress tolerance. PLS-PM analyses quantified the effects of CFB on the accumulation and detoxification pathways of Pb in the soil-rice system. Understanding how biochar influences the immobilization and detoxification of Pb in soil-rice systems could provide valuable insights for strategically using biochar to address hazardous elements in complex agricultural settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133903DOI Listing

Publication Analysis

Top Keywords

impact coconut-fiber
8
coconut-fiber biochar
8
translocation accumulation
8
accumulation detoxification
8
detoxification mechanisms
8
mechanisms soil-rice
8
biochar lead
4
lead translocation
4
soil-rice system
4
system elevated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!