A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interactions of moisture and light drive lichen growth and the response to climate change scenarios: experimental evidence for Lobaria pulmonaria. | LitMetric

Background And Aims: There is growing interest in the functional ecology of poikilohydric non-vascular photoautotrophs (NVPs), including 'cryptogamic' bryophytes and lichens. These organisms are structurally important in many ecosystems, contributing substantially to ecosystem function and services, while also being sensitive to climate change. Previous research has quantified the climate change response of poikilohydric NVPs using predictive bioclimatic models with standard climate variables including precipitation totals and temperature averages. This study aimed for an improved functional understanding of their climate change response based on their growth rate sensitivity to moisture and light.

Methods: We conducted a 24-month experiment to monitor lichen hydration and growth. We accounted for two well-known features in the ecology of poikilohydric NVPs, and exemplified here for a structurally dominant lichen epiphyte, Lobaria pulmonaria: (1) sensitivity to multiple sources of atmospheric moisture including rain, condensed dew-formation and water vapour; and (2) growth determined by the amount of time hydrated in the light, driving photosynthesis, referred to as the Iwet hypothesis.

Key Results: First, we found that even within an oceanic high-rainfall environment, lichen hydration was better explained by vapour pressure deficit than precipitation totals. Second, growth at a monthly resolution was positively related to the amount of time spent hydrated in the light, and negatively related to the amount of time spent hydrated in the dark.

Conclusions: Using multimodel averaging to project growth models for an ensemble of future climate change scenarios, we demonstrated reduced net growth for L. pulmonaria by the late 21st century, explained by extended climate dryness and lichen desiccation for periods when there is otherwise sufficient light to drive photosynthesis. The results further emphasize a key issue of photoperiodism when constructing functionally relevant models to understand the risk of climate change, especially for poikilohydric NVPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161569PMC
http://dx.doi.org/10.1093/aob/mcae029DOI Listing

Publication Analysis

Top Keywords

climate change
24
poikilohydric nvps
12
amount time
12
light drive
8
climate
8
change scenarios
8
lobaria pulmonaria
8
ecology poikilohydric
8
change response
8
precipitation totals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!