Seaweed from the genus Ulva (Ulvales, Chlorophyta) has a worldwide distribution and represents a potential biomass source for biotechnological applications. In the present study, we investigated the ulvan polysaccharide-rich fraction (UPRF) isolated from two Ulva species (U. rigida and U. pseudorotundata), naturally occurring on the Spanish Mediterranean coast. Chemical characterization of UPRFs was performed in order to explore the polysaccharides' composition. Biological assessments of UPRFs were compared by antioxidant activity and in vitro toxicity tests in the human cell lines: HCT-116 (colon cancer), G-361 (malignant melanoma), U-937 (leukemia), and HaCaT cells (immortalized keratinocytes). Chemical analysis revealed that both UPRFs presented rhamnose as the major relative sugar constituent, followed by glucose in U. rigida and xylose in U. pseudorotundata. Both also presented glucuronic acid, galactose, ribose, and mannose as the remaining monosaccharides. Similar antioxidant activity was obtained, where we observed increased activity in response to increased polysaccharide concentrations. Both UPRFs presented moderate toxicity against HCT-116 cell lines and a selectivity index ≥ 3, suggesting a good potential for use in pharmaceutical products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10126-024-10299-8 | DOI Listing |
Mar Biotechnol (NY)
April 2024
Andalusian Institute of Blue Biotechnology and Development (IBYDA), Experimental Centre Grice Hutchinson, Malaga University, Malaga, Spain.
Seaweed from the genus Ulva (Ulvales, Chlorophyta) has a worldwide distribution and represents a potential biomass source for biotechnological applications. In the present study, we investigated the ulvan polysaccharide-rich fraction (UPRF) isolated from two Ulva species (U. rigida and U.
View Article and Find Full Text PDFMicrob Cell Fact
October 2022
Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany.
Background: Marine algae are responsible for half of the global primary production, converting carbon dioxide into organic compounds like carbohydrates. Particularly in eutrophic waters, they can grow into massive algal blooms. This polysaccharide rich biomass represents a cheap and abundant renewable carbon source.
View Article and Find Full Text PDFSci Rep
August 2017
School of Agriculture, Food and Rural Development, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK.
Monoclonal antibodies (mAbs) are widely used and powerful research tools, but the generation of mAbs against glycan epitopes is generally more problematic than against proteins. This is especially significant for research on polysaccharide-rich land plants and algae (Viridiplantae). Most antibody production is based on using single antigens, however, there are significant gaps in the current repertoire of mAbs against some glycan targets with low immunogenicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!