https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=38430246&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 384302462024030420240403
1432-08517342024Mar02Cancer immunology, immunotherapy : CIICancer Immunol ImmunotherIntegrating molecular subtype and CD8+ T cells infiltration to predict treatment response and survival in muscle-invasive bladder cancer.66666610.1007/s00262-024-03651-3Luminal and Basal are the primary intrinsic subtypes of muscle-invasive bladder cancer (MIBC). The presence of CD8+ T cells infiltration holds significant immunological relevance, potentially influencing the efficacy of antitumor responses. This study aims to synergize the influence of molecular subtypes and CD8+ T cells infiltration in MIBC.This study included 889 patients with MIBC from Zhongshan Hospital, The Cancer Genome Atlas, IMvigor210 and NCT03179943 cohorts. We classified the patients into four distinct groups, based on the interplay of molecular subtypes and CD8+ T cells and probed into the clinical implications of these subgroups in MIBC.Among patients with Luminal-CD8+Thigh tumors, the confluence of elevated tumor mutational burden and PD-L1 expression correlated with a heightened potential for positive responses to immunotherapy. In contrast, patients featured by Luminal-CD8+Tlow displayed a proclivity for deriving clinical advantages from innovative targeted interventions. The Basal-CD8+Tlow subgroup exhibited the least favorable three-year overall survival outcome, whereas their Basal-CD8+Thigh counterparts exhibited a heightened responsiveness to chemotherapy.We emphasized the significant role of immune-molecular subtypes in shaping therapeutic approaches for MIBC. This insight establishes a foundation to refine the process of selecting subtype-specific treatments, thereby advancing personalized interventions for patients.© 2024. The Author(s).LiBingyuBDepartment of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.JinKaifengKNHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.LiuZhaopeiZNHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.SuXiaoheXNHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.XuZiyueZNHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.LiuGeGNHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.XuJingtongJDepartment of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.LiuHailongHDepartment of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.ChangYuanYDepartment of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.WangYiweiYDepartment of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.ZhuYuYDepartment of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.WangZeweiZDepartment of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.XuLeLDepartment of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.ZhangWeijuanWDepartment of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China. weijuanzhang@fudan.edu.cn.engSACA-CY22B02, ZYJH202309Shanghai Anticancer Association EYAS PROJECTSACA-CY22B02, ZYJH202309Shanghai Anticancer Association EYAS PROJECT82002670, 82103408, 82272930, 82372793, 82373276National Natural Science Foundation of China22ZR1413400, 23ZR1411700, 23ZR1440300Shanghai Municipal Natural Science Foundation21YF1407000Shanghai Sailing ProgramYJYQ201802Fudan University Shanghai Cancer Center for Outstanding Youth Scholars FoundationBX20230091China Postdoctoral Science FoundationJournal Article20240302
GermanyCancer Immunol Immunother86057320340-70040Biomarkers, TumorIMHumansCD8-Positive T-LymphocytesPrognosisUrinary Bladder Neoplasmsdrug therapygeneticsBiomarkers, TumorgeneticsMusclespathologyCD8+ T cells infiltrationChemotherapyImmunotherapyMolecular subtypeMuscle-invasive bladder cancerThe authors have declared no conflicts of interest.
20231072024232024346472024321247202432113202432epublish38430246PMC1090861910.1007/s00262-024-03651-310.1007/s00262-024-03651-3Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi: 10.3322/caac.21660.10.3322/caac.2166033538338Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, Lotan Y. Bladder cancer. Nat Rev Dis Primers. 2017;3:17022. doi: 10.1038/nrdp.2017.22.10.1038/nrdp.2017.2228406148Cathomas R, Lorch A, Bruins HM, et al. The 2021 updated european association of urology guidelines on metastatic urothelial carcinoma. Eur Urol. 2022;81:95–103. doi: 10.1016/j.eururo.2021.09.026.10.1016/j.eururo.2021.09.02634742583Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet (London, England) 2016;387:1909–1920. doi: 10.1016/s0140-6736(16)00561-4.10.1016/s0140-6736(16)00561-4PMC548024226952546Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA. 2014;111:3110–3115. doi: 10.1073/pnas.1318376111.10.1073/pnas.1318376111PMC393987024520177Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152–165. doi: 10.1016/j.ccr.2014.01.009.10.1016/j.ccr.2014.01.009PMC401149724525232Cancer Genome Atlas Research Network Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–322. doi: 10.1038/nature12965.10.1038/nature12965PMC396251524476821Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet (London, England) 2017;389:67–76. doi: 10.1016/s0140-6736(16)32455-2.10.1016/s0140-6736(16)32455-2PMC556863227939400Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–213. doi: 10.1056/NEJMoa020177.10.1056/NEJMoa02017712529460Cho Y, Miyamoto M, Kato K, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Can Res. 2003;63:1555–1559.12670904Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Can Res. 1998;58:3491–3494.9721846Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8:151–160. doi: 10.1038/nrclinonc.2010.223.10.1038/nrclinonc.2010.22321364688Rahim MK, Okholm TLH, Jones KB, et al. Dynamic CD8(+) T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell. 2023;186:1127–43.e18. doi: 10.1016/j.cell.2023.02.021.10.1016/j.cell.2023.02.021PMC1034870136931243Jin K, Yu Y, Zeng H, et al. CD103(+)CD8(+) tissue-resident memory T cell infiltration predicts clinical outcome and adjuvant therapeutic benefit in muscle-invasive bladder cancer. Br J Cancer. 2022;126:1581–1588. doi: 10.1038/s41416-022-01725-6.10.1038/s41416-022-01725-6PMC913013735165401Liu Z, Zhou Q, Wang Z, et al. Intratumoral TIGIT(+) CD8(+) T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer. J Immunother Cancer. 2020 doi: 10.1136/jitc-2020-000978.10.1136/jitc-2020-000978PMC743055832817209Huang Q, Zhou Q, Zhang H, et al. Identification and validation of an excellent prognosis subtype of muscle-invasive bladder cancer patients with intratumoral CXCR5(+) CD8(+) T cell abundance. Oncoimmunology. 2020;9:1810489. doi: 10.1080/2162402x.2020.1810489.10.1080/2162402x.2020.1810489PMC747018532939328Witjes JA, Bruins HM, Cathomas R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol. 2021;79:82–104. doi: 10.1016/j.eururo.2020.03.055.10.1016/j.eururo.2020.03.05532360052Bagaev A, Kotlov N, Nomie K, et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell. 2021;39:845–65.e7. doi: 10.1016/j.ccell.2021.04.014.10.1016/j.ccell.2021.04.01434019806Wherry EJ, Ha SJ, Kaech SM, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27:670–684. doi: 10.1016/j.immuni.2007.09.006.10.1016/j.immuni.2007.09.00617950003Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–2940. doi: 10.1172/jci91190.10.1172/jci91190PMC553141928650338Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–548. doi: 10.1038/nature25501.10.1038/nature25501PMC602824029443960Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–112. doi: 10.1038/nature08460.10.1038/nature08460PMC278333519847166Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12:41. doi: 10.1186/gb-2011-12-4-r41.10.1186/gb-2011-12-4-r41PMC321886721527027Zeng H, Liu Z, Wang Z, et al. Intratumoral IL22-producing cells define immunoevasive subtype muscle-invasive bladder cancer with poor prognosis and superior nivolumab responses. Int J Cancer. 2020;146:542–552. doi: 10.1002/ijc.32715.10.1002/ijc.3271531584197Dadhania V, Zhang M, Zhang L, et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine. 2016;12:105–117. doi: 10.1016/j.ebiom.2016.08.036.10.1016/j.ebiom.2016.08.036PMC507859227612592Xu Y, Zeng H, Jin K, Liu Z, Zhu Y, Xu L, Wang Z, Chang Y, Xu J. Immunosuppressive tumor-associated macrophages expressing interlukin-10 conferred poor prognosis and therapeutic vulnerability in patients with muscle-invasive bladder cancer. J Immunother Cancer. 2022 doi: 10.1136/jitc-2021-003416.10.1136/jitc-2021-003416PMC896118035338085Powles T, Durán I, van der Heijden MS, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet (London, England) 2018;391:748–757. doi: 10.1016/s0140-6736(17)33297-x.10.1016/s0140-6736(17)33297-x29268948Shi R, Wang X, Wu Y, et al. APOBEC-mediated mutagenesis is a favorable predictor of prognosis and immunotherapy for bladder cancer patients: evidence from pan-cancer analysis and multiple databases. Theranostics. 2022;12:4181–4199. doi: 10.7150/thno.73235.10.7150/thno.73235PMC916936135673559Goldstein JT, Berger AC, Shih J, Duke FF, Furst L, Kwiatkowski DJ, Cherniack AD, Meyerson M, Strathdee CA. Genomic activation of PPARG reveals a candidate therapeutic axis in bladder cancer. Can Res. 2017;77:6987–6998. doi: 10.1158/0008-5472.Can-17-1701.10.1158/0008-5472.Can-17-1701PMC583532128923856Rosenberg JE, O'Donnell PH, Balar AV, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37:2592–2600. doi: 10.1200/jco.19.01140.10.1200/jco.19.01140PMC678485031356140Tagawa ST, Balar AV, Petrylak DP, et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39:2474–2485. doi: 10.1200/jco.20.03489.10.1200/jco.20.03489PMC831530133929895Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22:725–736. doi: 10.1016/j.ccr.2012.09.022.10.1016/j.ccr.2012.09.022PMC352277323201165Powles T, Kockx M, Rodriguez-Vida A, et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat Med. 2019;25:1706–1714. doi: 10.1038/s41591-019-0628-7.10.1038/s41591-019-0628-731686036van Dijk N, Gil-Jimenez A, Silina K, et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat Med. 2020;26:1839–1844. doi: 10.1038/s41591-020-1085-z.10.1038/s41591-020-1085-z33046870Rozeman EA, Hoefsmit EP, Reijers ILM, et al. Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma. Nat Med. 2021;27:256–263. doi: 10.1038/s41591-020-01211-7.10.1038/s41591-020-01211-733558721Ma Z, Li X, Mao Y, Wei C, Huang Z, Li G, Yin J, Liang X, Liu Z. Interferon-dependent SLC14A1(+) cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell. 2022;40:1550–65.e7. doi: 10.1016/j.ccell.2022.11.005.10.1016/j.ccell.2022.11.00536459995Spaan I, Raymakers RA, van de Stolpe A, Peperzak V. Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential. J Hematol Oncol. 2018;11:67. doi: 10.1186/s13045-018-0615-3.10.1186/s13045-018-0615-3PMC596021729776381Zhang M, Weng W, Zhang Q, et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol. 2018;11:113. doi: 10.1186/s13045-018-0656-7.10.1186/s13045-018-0656-7PMC612595130185232Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, Ran Y, Wan J. LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res CR. 2018;37:225. doi: 10.1186/s13046-018-0864-6.10.1186/s13046-018-0864-6PMC613622830208924Stewart DJ. Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 2014 doi: 10.1093/jnci/djt356.10.1093/jnci/djt35624309006Álvarez-Fernández M, Malumbres M. Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell. 2020;37:514–529. doi: 10.1016/j.ccell.2020.03.010.10.1016/j.ccell.2020.03.01032289274Ingham M, Schwartz GK. Cell-cycle therapeutics come of age. J Clin Oncol. 2017;35:2949–2959. doi: 10.1200/jco.2016.69.0032.10.1200/jco.2016.69.0032PMC607582428580868