To explore the optoelectronic wetting droplet transport mechanism, a transient numerical model of optoelectrowetting (OEW) under the coupling of flow and electric fields is established. The study investigates the impact of externally applied voltage, dielectric constant of the dielectric layer, and interfacial tension between the two phases on the dynamic behavior of droplets during transport. The proposed model employs an improved Young's equation to calculate the instantaneous voltage and contact angle of the droplet on the dielectric layer. Results indicate that, under the influence of OEW, significant variations in the interface contact angle of droplets occur in bright and dark regions, inducing droplet movement. Moreover, the dynamic behavior of droplet transport is closely associated with various parameters, including externally applied voltage, dielectric layer material, and interfacial tension between the two phases, all of which impact the contact angle and, consequently, the transport process. By summarizing the influence patterns of the three key parameters studied, the optimization of droplet transport performance is achieved. The study employs two-dimensional simulation models to emulate the droplet motion under the influence of the electric field, investigating the OEW droplet transport mechanism. The continuous movement of droplets involves three stages: initial wetting, continuous transport, and reaching a steady position. The findings contribute theoretical support for the efficient design of digital microfluidic devices for OEW droplet movement and the selection of key parameters for droplet manipulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.202300296 | DOI Listing |
Microlife
December 2024
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.
The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
Osteoarthritis (OA) is characterized by articular cartilage degeneration, leading to pain and loss of joint function. Recent studies have demonstrated that omega-3 (ω3) polyunsaturated fatty acid (PUFA) supplementation can decrease injury-induced OA progression in mice fed a high-fat diet. Furthermore, PUFAs have been shown to influence the mechanical properties of chondrocyte membranes, suggesting that alterations in mechanosensitive ion channel signaling could contribute to the mechanism by which ω3 PUFAs decreased OA pathogenesis.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.
View Article and Find Full Text PDFCell Commun Signal
January 2025
IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal.
Background: Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions.
View Article and Find Full Text PDFExcess lipid droplet (LD) accumulation is associated with several pathological states, including Alzheimer's disease (AD). However, the mechanism(s) by which changes in LD composition and dynamics contribute to pathophysiology of these disorders remains unclear. Apolipoprotein E (ApoE) is a droplet associated protein with a common risk variant (E4) that confers the largest increase in genetic risk for late-onset AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!