Diclofenac is one of the most popular over-the-counter non-steroidal anti-inflammatory drug and poly(acrylic acid) is a frequently used as thickener, filler or stabilizer. For these reasons, they are common organic contaminants in raw wastewater. The purpose of the presented studies was to compare the adsorption capacity of three carbon-silica composites - metal-free C/SiO, iron-enriched C/Fe/SiO and manganese-enriched C/Mn/SiO towards diclofenac. The studies were carried out in single, and mixed systems in the presence of poly(acrylic acid) polymer. Adsorption, desorption and kinetics of the adsorption process were investigated. The concentration of diclofenac in the supernatants was determined using high-performance liquid chromatography. The solids were also characterized with an ASAP apparatus using low-temperature nitrogen desorption adsorption isotherms at liquid nitrogen temperature. In addition, potentiometric titrations and electrophoretic mobility measurements, as well as stability tests of the studied suspensions were carried out. The most efficient composite among investigated ones proved to be C/Fe/SiO removing diclofenac at the level of 46.68 mg/g for its initial concentration of 90 ppm. The results obtained clearly demonstrated that the carbon-silica composites are effective in separation of drugs from aqueous solutions and can be successfully used in the future for the removal of organic pollutants from water environment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202300813DOI Listing

Publication Analysis

Top Keywords

carbon-silica composites
12
polyacrylic acid
12
adsorption capacity
8
adsorption
5
diclofenac
5
capacity carbon-silica
4
composites diclofenac
4
diclofenac polyacrylic
4
acid systems
4
systems crucial
4

Similar Publications

Core-Shell Magnetic Particles: Tailored Synthesis and Applications.

Chem Rev

December 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China.

Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g.

View Article and Find Full Text PDF

The present study investigated the adsorption of diclofenac sodium (DCF) and carbamazepine (CBZ) on carbon-silica composites (CSC), activated carbon (RH-AC) and biogenic silica (RH-BS) based on rice husks from aqueous solutions. The materials were characterised using scanning electron microscopy, infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, nitrogen sorption and elemental analysis. These methods provided essential information on the morphology, chemical composition, textural properties and surface characteristics of porous materials.

View Article and Find Full Text PDF

Ribavirin (RIB) is widely used for the treatment of viral diseases such as herpes, hepatitis C, and Lassa fever. Moreover, to control the spread of COVID-19, the consumption of antiviral medicines, including RIB, has increased significantly worldwide. By combining ordered mesoporous carbon with silica nanoparticles ultrasound, we synthesized silica/ordered mesoporous carbon (SiO-OMC) hybrid composites that show excellent electrochemical performance.

View Article and Find Full Text PDF

Innovative strategy for the effective utilization of coal waste slag in the Fenton-like process for the degradation of trichloroethylene.

J Environ Manage

August 2024

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China. Electronic address:

In response to environmental concerns at the global level, there is considerable momentum in the exploration of materials derived from waste that are both sustainable and eco-friendly. In this study, CS-Fe (carbon, silica, and iron) composite was synthesized from coal gasification slag (CGS) and innovatively applied as a catalyst to activate PS (persulfate) for the degradation of trichloroethylene (TCE) in water. Scanning electron microscope (SEM), fourier transmission infrared spectroscopy (FTIR), energy dispersive x-ray spectroscopy (EDS), brunauer, emmet, and teller (BET) technique, and x-ray diffractometer (XRD) spectra were employed to investigate the surface morphology and physicochemical composition of the CS-Fe composite.

View Article and Find Full Text PDF

PdRu Bimetallic Nanoparticles/Metal-Organic Framework Composite through Supercritical CO-Assisted Immobilization.

ACS Omega

May 2024

Department of Collaborative Interdisciplinary Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-Shi, Kasuga 816-8580, Japan.

Metal-nanoparticle (NP)/metal-organic framework (MOF) composites have attracted considerable attention as heterogeneous catalysts. Compared with porous carbon, silica, and alumina, the charge-transfer interaction between the metal NPs and the MOF accelerated the catalytic activity. In this study, PdRu bimetallic NPs were successfully immobilized on MOFs such as MIL-101(Cr) by using supercritical carbon dioxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!