The enigmatic benefits of acute limb ischemic preconditioning (IP) in enhancing muscle force and exercise performance have intrigued researchers. This study sought to unravel the underlying mechanisms, focusing on increased neural drive and the role of spinal excitability while excluding peripheral factors. Soleus Hoffmann (H)-reflex /M-wave recruitment curves and unpotentiated supramaximal responses were recorded before and after IP or a low-pressure control intervention. Subsequently, the twitch interpolation technique was applied during maximal voluntary contractions to assess conventional parameters of neural output. Following IP, there was an increase in both maximum normalized force and voluntary activation (VA) for the plantar flexor group, with negligible peripheral alterations. Greater benefits were observed in participants with lower VA levels. Despite greater H-reflex gains, soleus volitional (V)-wave and sEMG amplitudes remained unchanged. In conclusion, IP improves muscle force via enhanced neural drive to the muscles. This effect appears associated, at least in part, to reduced presynaptic inhibition and/or increased motoneuron excitability. Furthermore, the magnitude of the benefit is inversely proportional to the skeletal muscle's functional reserve, making it particularly noticeable in under-recruited muscles. These findings have implications for the strategic application of the IP procedure across diverse populations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/sms.14591DOI Listing

Publication Analysis

Top Keywords

ischemic preconditioning
8
spinal excitability
8
voluntary activation
8
muscle force
8
neural drive
8
preconditioning increases
4
increases spinal
4
excitability voluntary
4
activation maximal
4
maximal plantar
4

Similar Publications

Purpose: We designed a study investigating the cardioprotective role of sleep apnea (SA) in patients with acute myocardial infarction (AMI), focusing on its association with infarct size and coronary collateral circulation.

Methods: We recruited adults with AMI, who underwent Level-III SA testing during hospitalization. Delayed-enhancement cardiac magnetic resonance (CMR) imaging was performed to quantify AMI size (percent-infarcted myocardium).

View Article and Find Full Text PDF

Introduction: Arterialized venous flap, like any other flap, will undergo an ischemic reperfusion injury during its transfer process. To overcome this, ischemic preconditioning can be done to provide protection and enhanced flap survival. One of the reliable parameters of flap survival is its temperature.

View Article and Find Full Text PDF

The objective was to study the risk factors of venous thrombosis after ankle fracture with type 2 diabetes mellitus surgery using a tourniquet and to assess the effect of ischemic preconditioning and metformin combination therapy in preventing thrombosis. One hundred eighty patients with ankle fractures combined with type 2 diabetes mellitus treated with lower extremity tourniquet surgery between January 2020 and December 2023 were analyzed. Based on postoperative color Doppler ultrasound of both lower extremities, the patients were divided into thrombus-positive and negative groups.

View Article and Find Full Text PDF

Background And Purpose: To investigate the impact of a history of ischemic stroke or transient ischemic attack (TIA) on the effectiveness of remote ischemic conditioning (RIC) for outcomes in acute ischemic stroke patients.

Methods: We conducted a post hoc analysis of the Remote Ischaemic Conditioning for Acute Moderate Ischaemic Stroke (RICAMIS) trial. Patients in RICAMIS were categorized into two groups according to a history of stroke.

View Article and Find Full Text PDF

Effect of multiorgan abdominal ischemic preconditioning on experimental kidney transplantation.

Acta Cir Bras

January 2025

Universidad Nacional de La Plata - Faculty of Medicine - Organ Transplant Laboratory - La Plata - Argentina.

Purpose: To mitigate ischemia-reperfusion injury (IRI) triggered in solid organ transplant procedures, we aimed to evaluate the effects of multi-organ abdominal ischemic preconditioning (MAIP) in the context of renal IRI.

Methods: An experimental kidney transplant model was conducted. Rats were divided into three groups: an intervention free basal group from which physiological data was collected; a control group (CT), which consisted of transplanted animals without MAIP; and a treated group, in which a MAIP protocol was implemented in the donor during the procurement of the left kidney, monitoring the recipient for 24 hours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!