We subtyped bladder cancer (BC) patients based on the expression patterns of endothelial cell (EC) -related genes and constructed a diagnostic signature and an endothelial cell prognostic index (ECPI), which are useful for diagnosing BC patients, predicting the prognosis of BC and evaluating drug sensitivity. Differentially expressed genes in ECs were obtained from the Tumour Immune Single-Cell Hub database. Subsequently, a diagnostic signature, a tumour subtyping system and an ECPI were constructed using data from The Cancer Genome Atlas and Gene Expression Omnibus. Associations between the ECPI and the tumour microenvironment, drug sensitivity and biofunctions were assessed. The hub genes in the ECPI were identified as drug candidates by molecular docking. Subtype identification indicated that high EC levels were associated with a worse prognosis and immunosuppressive effect. The diagnostic signature and ECPI were used to effectively diagnose BC and accurately assess the prognosis of BC and drug sensitivity among patients. Three hub genes in the ECPI were extracted, and the three genes had the closest affinity for doxorubicin and curcumin. There was a close relationship between EC and BC. EC-related genes can help clinicians diagnose BC, predict the prognosis of BC and select effective drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907833 | PMC |
http://dx.doi.org/10.1111/jcmm.18155 | DOI Listing |
Microbiol Spectr
January 2025
Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA.
Mycoplasma (Class: Mollicutes) contamination in cell cultures is a universal concern for research laboratories. Some estimates report contamination in up to 35% of continuous cell lines. Various commercial antibiotic treatments can successfully decontaminate clean cell lines ; however, decontamination of bacterial cultures remains challenging.
View Article and Find Full Text PDFOMICS
January 2025
Department of Biotechnology, Brainware University, Barasat, West Bengal, India.
Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, INSERM, CEA, UMR 1292, Grenoble, France.
Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE.
View Article and Find Full Text PDFJ Clin Invest
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!