Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The shoulder joint is the most commonly dislocated joint in the human body, and the recurrence rate exceeds 50% after nonsurgical treatment. Although surgical treatment reduces the recurrence rate, there is controversy regarding the optimal surgical approach. Previous studies suggest that the Latarjet procedure yields favourable outcomes for specific populations at risk of recurrence, such as competitive athletes with significant glenoid defects. However, most of the existing related research consists of nonrandomized controlled trials with small sample sizes, and there is a lack of strong evidence regarding the efficacy and safety of the Latarjet procedure.
Methods: The PubMed, Embase, Cochrane Library, and Web of Science databases were systematically searched. Athletes with ≥ 20% glenoid defects were selected for inclusion. The following data were extracted: general patient information, instability rates, return to sports (RTS) rates, imaging features (graft positioning rate and graft healing rate), functional assessments [Rowe score, Athletic Shoulder Outcome Scoring System(ASOSS), visual analogue scale (VAS), forward flexion function, and external rotation function], and complications.
Results: After excluding suspected duplicate cases, a total of 5 studies were included in this meta-analysis. The studies involved a total of 255 patients, including 237 males (93%) and 18 females (7%). The average age at the time of surgery was 25.4 ± 8.5 years. All the studies had a minimum follow-up period of 2 years, with an average follow-up time of 48.7 ± 18.9 months. The pooled rate of return to sport (RTS) was 94.3% (95% CI: 87.3%, 98.8%), and 86.1% (95% CI: 78.2%, 92.5%) of patients returned to their preoperative level of activity. The pooled redislocation rate was 1.1% (95% CI: 0%, 3.8%). Regarding the imaging results, the combined graft retention rate was 92.1% (95% CI: 88.1%, 95.5%), and the graft healing rate was 92.1% (95% CI: 88%, 95.4%). Postoperative functional evaluation revealed that the combined Rowe score, ASOSS score, and VAS score were 93.7 ± 6.5 points, 88.5 ± 4.4 points, and 1.1 ± 10 points, respectively. The forward flexion and external rotation angles were 170.9 ± 6.9 degrees and 65.6 ± 4.5 degrees, respectively. After excluding one study with unclear complications, the combined complication rate was 9.4% (95% CI: 1.0%, 23.6%).
Conclusion: For athletes with shoulder instability and a total of ≥ 20% glenoid bone defects, the Latarjet procedure can achieve excellent functional outcomes, with the majority of patients returning to preoperative levels of sports activity. This procedure also leads to a low recurrence rate. Therefore, the Latarjet procedure has been proven to be a safe and effective treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908040 | PMC |
http://dx.doi.org/10.1186/s13018-024-04641-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!