Targeted next-generation sequencing and long-read HiFi sequencing provide novel insights into clinically significant KLF1 variants.

BMC Genomics

State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, 200433, Shanghai, China.

Published: March 2024

Background: Krüppel-like factor 1 (KLF1), a crucial erythroid transcription factor, plays a significant role in various erythroid changes and haemolytic diseases. The rare erythrocyte Lutheran inhibitor (In(Lu)) blood group phenotype serves as an effective model for identifying KLF1 hypomorphic and loss-of-function variants. In this study, we aimed to analyse the genetic background of the In(Lu) phenotype in a population-based sample group by high-throughput technologies to find potentially clinically significant KLF1 variants.

Results: We included 62 samples with In(Lu) phenotype, screened from over 300,000 Chinese blood donors. Among them, 36 samples were sequenced using targeted Next Generation Sequencing (NGS), whereas 19 samples were sequenced using High Fidelity (HiFi) technology. In addition, seven samples were simply sequenced using Sanger sequencing. A total of 29 hypomorphic or loss-of-function variants of KLF1 were identified, 21 of which were newly discovered. All new variants discovered by targeted NGS or HiFi sequencing were validated through Sanger sequencing, and the obtained results were found to be consistent. The KLF1 haplotypes of all new variants were further confirmed using clone sequencing or HiFi sequencing. The lack of functional KLF1 variants detected in the four samples indicates the presence of additional regulatory mechanisms. In addition, some samples exhibited BCAM polymorphisms, which encodes antigens of the Lutheran (LU) blood group system. However, no BCAM mutations which leads to the absence of LU proteins were detected.

Conclusions: High-throughput sequencing methods, particularly HiFi sequencing, were introduced for the first time into genetic analysis of the In(Lu) phenotype. Targeted NGS and HiFi sequencing demonstrated the accuracy of the results, providing additional advantages such as simultaneous analysis of other blood group genes and clarification of haplotypes. Using the In(Lu) phenotype, a powerful model for identifying hypomorphic or loss-of-function KLF1 variants, numerous novel variants have been detected, which have contributed to the comprehensive understanding of KLF1. These clinically significant KLF1 mutations can serve as a valuable reference for the diagnosis of related blood cell diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908068PMC
http://dx.doi.org/10.1186/s12864-024-10148-xDOI Listing

Publication Analysis

Top Keywords

hifi sequencing
20
inlu phenotype
16
clinically klf1
12
klf1 variants
12
blood group
12
hypomorphic loss-of-function
12
sequencing
11
klf1
10
variants
8
model identifying
8

Similar Publications

Chromosome-level genome assembly of the northern snakehead (Channa argus) using PacBio and Hi-C technologies.

Sci Data

December 2024

Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China.

The evolutionary origins of specialized organs pose significant challenges for empirical studies, as most such organs evolved millions of years ago. The Northern snakehead (Channa argus), an air-breathing fish, possesses a suprabranchial organ, a common feature of the Anabantoidei, offering a unique opportunity to investigate the function and evolutionary origins of specialized organs. In this study, a high-quality chromosome-level reference genome of C.

View Article and Find Full Text PDF

Characterization of the complete mitochondrial genome of the rice bean (Vigna umbellata).

BMC Plant Biol

December 2024

Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.

Background: Rice bean (Vigna umbellata), an underrated legume crop, demonstrates strong adaptability to poor soil fertility and has significant potential to enhance global food security. It is valuable both as a vegetable and fodder crop due to its high protein content, essential fatty acids, and micronutrients. Despite the sequencing of a high-quality genome of rice bean, its mitochondrial genome (mitogenome) sequence has not yet been reported.

View Article and Find Full Text PDF

Serangium japonicum (Coleoptera; Coccinellidae) plays a crucial role as a predatory coccinellid in ecosystems, exhibiting adept predation on diverse whitefly species and effectively regulating their population dynamics. Nonetheless, the absence of high-quality genomic data has hindered our comprehension of the molecular mechanisms underlying this predatory beetle. This study performed genome sequencing of S.

View Article and Find Full Text PDF

The peacock blenny Salaria pavo is notorious for its extreme male sexual polymorphism, with large males defending nests and younger reproductive males mimicking the appearance and behavior of females to parasitically fertilize eggs. The lack of a reference genome has, to date, limited the understanding of the genetic basis of the species phenotypic plasticity. Here, we present the first reference genome assembly of the peacock blenny using PacBio HiFi long-reads and Hi-C sequencing data.

View Article and Find Full Text PDF

The entomopathogenic fungus infects diverse insect host species. We present an annotated draft genome of (Commonwealth Scientific and Industrial Research Organisation [CSIRO] strain M-1000) isolated from a species individual, thereby contributing to future research of as a potential biological control agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!