The aim of this work is to examine the levels, distribution, bases, and hazards of n-alkanes (n-C9 to n-C20) and PAHs in the seawater and sediments around oil production locations in the whole delta region. The variations in the levels of PAHs and n-alkanes in seawater and sediment of the Nile delta coast of the Mediterranean were investigated using GC-MS/MS. The Σn-alkanes residues ranged between 12.05 and 93.51 mg/L (mean: 50.45 ± 17.49 mg/L) and 4.70 to 84.03 µg/g (mean: 31.02 ± 27.995 µg/g) in seawater and sediments, respectively. Total PAHs concentrations ranged between 4.485 and 16.337 μg/L (average: 9.47 ± 3.69 μg/L) and 1.32 to 28.38 ng/g (average 8.61 ± 7.57 ng/g) in seawater and sediment samples, respectively. The CPI (carbon preference index) values fluctuated between 0.62 and 1.72 (seawater) and from 0.234 to 2.175 (sediment), proposing the variation sources of n-alkane in the studied area. PAHs concentrations were lower than the Effective Range Low (ERL) and Effective Range Median (ERM) levels. The Toxic Equivalent Quotient (TEQ) values oscillated between 0.002 and 6.84 ng/L and from 3.72 to 13.48 ng/g for the seawater and sediment samples, respectively. The Ant/(Ant + Phe) ratio in sediment and seawater samples indicated a pyrolytic source while the BaA/(BaA + Chry) ratio indicates petrogenic sources in most of the studied stations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907701 | PMC |
http://dx.doi.org/10.1038/s41598-024-55339-4 | DOI Listing |
Sensors (Basel)
December 2024
Department of Operational Oceanography, Maritime Institute, Gdynia Maritime University, ul. Roberta de Plelo 20, 80-848 Gdańsk, Poland.
The aim of this study is to verify the possibility of detecting oil in the bottom sediment using a fibre optic system. The presence of oil is assessed on excitation-emission spectra obtained from spectral fluorescence signals of the sediment sample. A factory spectrofluorometer coupled with an experimental fibre optic measurement system was used.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China. Electronic address:
The potential release of radionuclides threatens marine ecosystems with the rapid development of coastal nuclear power plants in China. However, transport, dispersion, and final budget of anthropogenic radionuclides remain unclear, especially in the Bohai and North Yellow Seas, which are semi-enclosed marginal seas with poor water exchange. This study analyzed anthropogenic I concentration (a typical product of nuclear power plant operations) in seawater samples from this area.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China.
The massive production and widespread use of plastics have resulted in a growing marine plastic pollution problem. Cold seep ecosystems are maintained by microorganisms related to nitrogen and carbon cycling that occur in deep-sea areas, where cold hydrocarbon-rich water seeps from the ocean floor. Little is known about plastic pollution in this ecosystem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!