Visual objects are often defined by multiple features. Therefore, learning novel objects entails learning feature conjunctions. Visual cortex is organized into distinct anatomical compartments, each of which is devoted to processing a single feature. A prime example are neurons purely selective to color and orientation, respectively. However, neurons that jointly encode multiple features (mixed selectivity) also exist across the brain and play critical roles in a multitude of tasks. Here, we sought to uncover the optimal policy that our brain adapts to achieve conjunction learning using these available resources. 59 human subjects practiced orientation-color conjunction learning in four psychophysical experiments designed to nudge the visual system towards using one or the other resource. We find that conjunction learning is possible by linear mixing of pure color and orientation information, but that more and faster learning takes place when both pure and mixed selectivity representations are involved. We also find that learning with mixed selectivity confers advantages in performing an untrained "exclusive or" (XOR) task several months after learning the original conjunction task. This study sheds light on possible mechanisms underlying conjunction learning and highlights the importance of learning by mixed selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907723 | PMC |
http://dx.doi.org/10.1038/s41539-024-00226-w | DOI Listing |
Pain Ther
January 2025
Department of Medicine, Nephrology Division, University of Verona, Verona, Italy.
Introduction: Pain is one of the most frequently reported symptoms in hemodialyzed (HD) patients, with prevalence rates between 33% and 82%. Risk factors for chronic pain in HD patients are older age, long-lasting dialysis history, several concomitant diseases, malnutrition, and others. However, chronic pain assessment in HD patients is rarely performed by specialists in pain medicine, with relevant consequences in terms of diagnostic and treatment accuracy.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Logistics Education (LEED) at Kühne Foundation, Hamburg, Germany.
Background: To ensure the complete traceability of healthcare commodities, robust end-to-end data management protocols are needed for the supply chain. In Ethiopia, digital tools like Dagu-2 are used in the lower levels of the healthcare supply chain. However, there is a lack of information regarding the implementation status, factors, and challenges of Dagu-2, as it is a recent upgrade from the offline Dagu-1 application.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dye, methyl orange was selected to understand how different parameters, such as temperature (20-80°C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity.
View Article and Find Full Text PDFBioresour Technol
January 2025
Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:
Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2024
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania. Electronic address:
The key step in the entire molecularly imprinted polymer (MIP) preparation process is the formation of the complementary cavities in the polymer matrix through the template removal process. The template is removed using chemical treatments, leaving behind selective binding sites for target molecules within the polymer matrix. Other MIP preparation steps include mixing monomers and template molecules in the appropriate solvent(s), monomer-template complex equilibration, and polymerisation of the monomers around the template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!