Introduction: Artificial Intelligence (AI) algorithms, particularly Deep Learning (DL) models are known to be data intensive. This has increased the demand for digital data in all domains of healthcare, including dentistry. The main hindrance in the progress of AI is access to diverse datasets which train DL models ensuring optimal performance, comparable to subject experts. However, administration of these traditionally acquired datasets is challenging due to privacy regulations and the extensive manual annotation required by subject experts. Biases such as ethical, socioeconomic and class imbalances are also incorporated during the curation of these datasets, limiting their overall generalizability. These challenges prevent their accrual at a larger scale for training DL models.
Methods: Generative AI techniques can be useful in the production of Synthetic Datasets (SDs) that can overcome issues affecting traditionally acquired datasets. Variational autoencoders, generative adversarial networks and diffusion models have been used to generate SDs. The following text is a review of these generative AI techniques and their operations. It discusses the chances of SDs and challenges with potential solutions which will improve the understanding of healthcare professionals working in AI research.
Conclusion: Synthetic data customized to the need of researchers can be produced to train robust AI models. These models, having been trained on such a diverse dataset will be applicable for dissemination across countries. However, there is a need for the limitations associated with SDs to be better understood, and attempts made to overcome those concerns prior to their widespread use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907705 | PMC |
http://dx.doi.org/10.1038/s41405-024-00198-4 | DOI Listing |
Plant Dis
January 2025
University of California Davis, Cooperative Extension, Napa, California, United States;
The timely detection of viral pathogens in vineyards is a critical aspect of management. Diagnostic methods can be labor-intensive and may require specialized training or facilities. The emergence of artificial intelligence (AI) has the potential to provide innovative solutions for disease detection but requires a significant volume of high-quality data as input.
View Article and Find Full Text PDFAnn Intern Med
January 2025
Clinical Epidemiology and Research Center (CERC), Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy, and Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany (H.J.S.).
Description: Artificial intelligence (AI) has been defined by the High-Level Expert Group on AI of the European Commission as "systems that display intelligent behaviour by analysing their environment and taking actions-with some degree of autonomy-to achieve specific goals." Artificial intelligence has the potential to support guideline planning, development and adaptation, reporting, implementation, impact evaluation, certification, and appraisal of recommendations, which we will refer to as "guideline enterprise." Considering this potential, as well as the lack of guidance for the use of AI in guidelines, the Guidelines International Network (GIN) proposes a set of principles for the development and use of AI tools or processes to support the health guideline enterprise.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
National Center for Human Factors in Healthcare, MedStar Health Research Institute, Washington, DC, United States.
Artificial intelligence-enabled ambient digital scribes may have many potential benefits, yet results from our study indicate that there are errors that must be evaluated to mitigate safety risks.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Computer Science, University of California, Irvine, Irvine, CA, United States.
Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
Background: Uncertainty in the diagnosis of lung nodules is a challenge for both patients and physicians. Artificial intelligence (AI) systems are increasingly being integrated into medical imaging to assist diagnostic procedures. However, the accuracy of AI systems in identifying and measuring lung nodules on chest computed tomography (CT) scans remains unclear, which requires further evaluation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!