Coculture with macrophages alters ferroptosis susceptibility of triple-negative cancer cells.

Cell Death Discov

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Published: March 2024

Various treatment options, such as molecular targeted drugs and immune checkpoint blockades, are available for patients with cancer. However, some cancer types are refractory to molecular targeted therapies or acquire drug resistance after long-term treatment. Thus, ferroptosis, a newly defined type of programmed cell death caused by the iron-dependent accumulation of lipid peroxidation, has gained attention as a novel cancer treatment strategy. Understanding cell-cell interactions in the tumor microenvironment is important for the clinical application of ferroptosis inducers. However, the effects of cell-cell interactions on ferroptosis sensitivity remain unclear. Thus, we aimed to evaluate the effects of macrophage-cancer cell interactions on ferroptosis induction. Coculture experiments showed that conditioned medium prepared from macrophages did not alter the ferroptosis sensitivity of cancer cells. By contrast, coculture via transwell, which enables cell-cell interactions through secretion, increased the sensitivity of cancer cells to ferroptosis inducers. Additionally, direct coculture increased the susceptibility of cancer cells to RSL3-induced ferroptosis. Mechanistically, coculture with macrophages upregulated the levels of intracellular ferrous ions and lipid peroxidation in cancer cells. These findings provide novel insights into the mechanisms by which cell-cell interactions influence ferroptosis induction and application of ferroptosis inducers as a cancer treatment option.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907599PMC
http://dx.doi.org/10.1038/s41420-024-01884-wDOI Listing

Publication Analysis

Top Keywords

cancer cells
20
cell-cell interactions
16
ferroptosis inducers
12
ferroptosis
10
cancer
9
coculture macrophages
8
molecular targeted
8
lipid peroxidation
8
cancer treatment
8
application ferroptosis
8

Similar Publications

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

Purpose: Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) protein overexpression is an emerging biomarker in gastric cancer and gastroesophageal junction cancer (GC). We assessed FGFR2b protein overexpression prevalence in nearly 3,800 tumor samples as part of the prescreening process for a global phase III study in patients with newly diagnosed advanced or metastatic GC.

Methods: As of June 28, 2024, 3,782 tumor samples from prescreened patients from 37 countries for the phase III FORTITUDE-101 trial (ClinicalTrials.

View Article and Find Full Text PDF

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!