The portfolio of extraordinary fire retardancy, mechanical properties, dielectric/electric insulating performances, and thermal conductivity (λ) is essential for the practical applications of epoxy resin (EP) in high-end industries. To date, it remains a great challenge to achieve such a performanceportfolio in EP due to their different and even mutually exclusive governing mechanisms. Herein, a multifunctional additive (G@SiO@FeHP) is fabricated by in situ immobilization of silica (SiO) and iron phenylphosphinate (FeHP) onto the graphene (G) surface. Benefiting from the synergistic effect of G, SiO and FeHP, the addition of 1.0 wt% G@SiO@FeHP enables EP to achieve a vertical burning (UL-94) V-0 rating and a limiting oxygen index (LOI) of 30.5%. Besides, both heat release and smoke generation of as-prepared EP nanocomposite are significantly suppressed due to the condensed-phase function of G@SiO@FeHP. Adding 1.0 wt% G@SiO@FeHP also brings about 44.5%, 61.1%, and 42.3% enhancements in the tensile strength, tensile modulus, and impact strength of EP nanocomposite. Moreover, the EP nanocomposite exhibits well-preserved dielectric and electric insulating properties and significantly enhanced λ. This work provides an integrated strategy for the development of multifunctional EP materials, thus facilitating their high-performance applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202310724DOI Listing

Publication Analysis

Top Keywords

wt% g@sio@fehp
8
heterostructured graphene@silica@iron
4
graphene@silica@iron phenylphosphinate
4
phenylphosphinate fire-retardant
4
fire-retardant strong
4
strong thermally
4
thermally conductive
4
conductive electrically
4
electrically insulated
4
insulated epoxy
4

Similar Publications

PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma.

Clin Transl Oncol

January 2025

Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.

Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

The long-term clinical outcomes and associated prognostic factors in contactin-associated protein-like 2 (CASPR2)-antibody diseases are unknown. A total of 75 participants with CASPR2 antibodies were longitudinally assessed for disability, quality-of-life, and chronic pain. Although most symptoms improved within 6 months of treatment, neuropathic pain and fatigue were the most immunotherapy refractory, and persisted for up to 6 years.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!