The role of mitochondrial transfer via tunneling nanotubes in the central nervous system: A review.

Medicine (Baltimore)

Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.

Published: March 2024

Tumour necrosis factor alpha-induced protein 2 (TNFAIP2) is a gene induced by tumor necrosis factor in endothelial cells. TNFAIP2 has important functions in physiological and pathological processes, including cell proliferation, adhesion, migration, angiogenesis, inflammation, tunneling nanotube (TNT) formation and tumorigenesis. Moreover, TNFAIP2 is the key factor in the formation of TNTs. TNTs are related to signal transduction between different cell types and are considered a novel means of cell-to-cell communication. Mesenchymal stem cells (MSCs) are pluripotent cells that exhibit self-renewal, multidirectional differentiation, paracrine function and immune-regulating ability. MSCs can transfer mitochondria through TNTs to improve the functions of target cells. This review revealed that TNFAIP2 promotes the formation of TNTs and that MSCs rely on TNTs for mitochondrial transfer to ameliorate cell dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906627PMC
http://dx.doi.org/10.1097/MD.0000000000037352DOI Listing

Publication Analysis

Top Keywords

mitochondrial transfer
8
necrosis factor
8
formation tnts
8
tnts
5
role mitochondrial
4
transfer tunneling
4
tunneling nanotubes
4
nanotubes central
4
central nervous
4
nervous system
4

Similar Publications

The adaptor protein Miro1 modulates horizontal transfer of mitochondria in mouse melanoma models.

Cell Rep

January 2025

Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; 1(st) Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic. Electronic address:

Recent research has shown that mtDNA-deficient cancer cells (ρ cells) acquire mitochondria from tumor stromal cells to restore respiration, facilitating tumor formation. We investigated the role of Miro1, an adaptor protein involved in movement of mitochondria along microtubules, in this phenomenon. Inducible Miro1 knockout (Miro1) mice markedly delayed tumor formation after grafting ρ cancer cells.

View Article and Find Full Text PDF

The tRF-33/IGF1 Axis Dysregulates Mitochondrial Homeostasis in HER2-Negative Breast Cancer.

Am J Physiol Cell Physiol

January 2025

Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.

Transfer RNA-derived small RNAs (tsRNAs), a recently identified non-coding RNA subset, are mainly classified into tRNA-derived small RNA fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs). tsRNAs dysregulation is frequently observed in numerous cancer types, suggesting involvement in tumorigenesis. However, their functions in breast cancer (BC) remain to be fully understood.

View Article and Find Full Text PDF

We present the complete mitochondrial genome of from China. The mitogenome of is circular, AT-rich (75.3%), and 15,898 bp in length.

View Article and Find Full Text PDF
Article Synopsis
  • The transmembrane potential is crucial for cellular functions like signaling and energy production, with Rhodamine voltage reporters (RhoVRs) serving as small, non-invasive sensors that can detect voltage changes, especially in mitochondria.
  • Extensive simulations and free-energy calculations revealed that the orientation of RhoVRs relative to membranes, influenced by their polarized functional groups, significantly impacts their voltage sensitivity and localization within cells.
  • The study's findings on the relationship between the chemical structure of RhoVRs and their membrane behavior offer valuable insights for designing fluorescent dyes that better detect voltage changes.
View Article and Find Full Text PDF

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!