Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Among the different pathways involved in the cell-to-cell communication, extracellular vesicles (EVs) are defined as key players in the transport of different signalling molecules, such as lipids, proteins, and RNA, from the originating cells to specific target cells. The biogenesis and composition of EVs are complex and confer them a unique ability to more effectively reach tissues and cells as compared to other types of synthetic carriers. Owing to these properties, EVs have been suggested as new therapeutic tools for personalized medicine. Since cardiometabolic diseases have reached pandemic proportions, new therapies are needed to be developed. In this context, EVs appear as promising therapeutic tools against cardiometabolic disorders associated with obesity and diabetes. This review focuses on the latest research on preclinical applications of EVs for cardiometabolic diseases, and draw primarily on our experience in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2024.167095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!