A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the mechanism of Erteng-Sanjie capsule in treating gastric and colorectal cancers via network pharmacology and in-vivo validation. | LitMetric

Ethnopharmacological Relevance: The Erteng-Sanjie capsule (ETSJC) has therapeutic effects against gastric cancer (GC) and colorectal cancer (CRC). However, its underlying pharmacological mechanism remains unclear.

Aim Of The Study: To explore the pharmacological mechanism of ETSJC against GC and CRC via network pharmacology and in-vivo validation.

Materials And Methods: Data on the ingredients of ETSJC were obtained from the TCMSP and HERB databases. Further, details on the related targets of the active ingredients were collected from the HERB and SwissTargetPrediction databases. The targets in GC and CRC, which were screened from the OMIM, GeneCards, and TTD databases, were uploaded to STRING for a separate protein-protein interaction network analysis. The common targets shared by ETSJC, GC, and CRC were then screened. Cytoscape and STRING were used to construct the networks of herbs-compounds-targets and PPI. Metascape was utilized to analyze the enrichment of the GO and KEGG pathways. Molecular docking was used to validate the potential binding mode between the core ingredients and targets. Finally, the predicted results were verified with animal experiment.

Results: Eight core ingredients (resveratrol, quercetin, luteolin, baicalein, delphinidin, kaempferol, pinocembrin, and naringenin) and six core targets (TP53, SRC, PIK3R1, AKT1, MAPK3, and STAT3) were filtered via network analysis. The molecular mechanism mainly involved the positive regulation of various processes such as cell migration, protein phosphorylation, and the PI3K-Akt signaling pathway. Molecular docking revealed that the core ingredients could be significantly combined with all core targets. The animal experiment revealed that ETSJC could suppress proliferation and promote apoptosis of both GC and CRC tumor cells by regulating the PI3K/Akt signaling pathway.

Conclusions: Multiple targets (TP53, SRC, AKT1, and STAT3) were important in GC and CRC. ETSJC could act on these targets and engage in different pathways against GC and CRC. Simultaneously, inhibiting the PI3K/Akt signaling pathway was a promising therapeutic mechanism for treating GC and CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.117945DOI Listing

Publication Analysis

Top Keywords

core ingredients
12
erteng-sanjie capsule
8
network pharmacology
8
pharmacology in-vivo
8
crc
8
pharmacological mechanism
8
etsjc crc
8
targets
8
crc screened
8
network analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!