Cardiovascular disease, the primary cause of human mortality globally, is predominantly caused by a progressive disorder known as atherosclerosis. Atherosclerosis refers to the process of accumulation of cholesterol-enriched lipoproteins and the concomitant initiation of inflammatory processes in the arterial wall, including the recruitment of immune cells. This leads to the formation of atherosclerotic plaques, initially causing a thickening of the arterial wall and narrowing of arteries. However, as plaque formation progresses, atherosclerotic plaques may become unstable and rupture, leading to a blood clot that blocks the affected artery or travels through the blood to block blood flow elsewhere. In the early 1990s, emerging gene editing methods enabled the development of apolipoprotein E knockout (Apoe-/- ) and low-density lipoprotein receptor knockout (Ldlr-/- ) mice. These mice have been instrumental in unraveling the complex pathogenesis of atherosclerosis. Around the same time, human APOE*3-Leiden transgenic mice were generated, which were more recently cross-bred with human cholesteryl ester transfer protein (CETP) transgenic mice to generate APOE*3-Leiden.CETP mice. This model appears to closely mimic human lipoprotein metabolism and responds to classic lipid-lowering interventions due to an intact ApoE-LDLR pathway of lipoprotein remnant clearance. In this review, we describe the role of lipid metabolism and inflammation in atherosclerosis development and highlight the characteristics of the frequently used animal models to study atherosclerosis, with a focus on mouse models, discussing their advantages and limitations. Moreover, we present a detailed methodology to quantify atherosclerotic lesion area within the aortic root region of the murine heart, as well as details required for scoring atherosclerotic lesion severity based on guidelines of the American Heart Association adapted for mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046329PMC
http://dx.doi.org/10.1530/VB-23-0017DOI Listing

Publication Analysis

Top Keywords

mouse models
8
detailed methodology
8
methodology quantify
8
aortic root
8
arterial wall
8
atherosclerotic plaques
8
transgenic mice
8
atherosclerotic lesion
8
atherosclerosis
6
mice
6

Similar Publications

Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.

Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.

View Article and Find Full Text PDF

Personalized Nanovaccine Based on STING-Activating Nanocarrier for Robust Cancer Immunotherapy.

ACS Nano

January 2025

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.

Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.

View Article and Find Full Text PDF

Background: Skin wounds are highly common in diabetic patients, and with increasing types of pathogenic bacteria and antibiotic resistance, wounds and infections in diabetic patients are difficult to treat and heal.

Aim: To explore the effects of betaine ointment (BO) in promoting the healing of skin wounds and reducing the inflammation and apoptosis of skin cells in microbially infected diabetic mice.

Methods: By detecting the minimum inhibitory concentrations (MICs) of betaine and plant monomer components such as psoralen, we prepared BO with betaine as the main ingredient, blended it with traditional Chinese medicines such as gromwell root and psoralen, and evaluated its antibacterial effects and safety and .

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is an inflammation-associated tumor with a dismal prognosis. Immunotherapy has become an important treatment strategy for HCC, as immunity is closely related to inflammation in the tumor microenvironment. Inflammation regulates the expression of programmed death ligand-1 (PD-L1) in the immunosuppressive tumor microenvironment and affects immunotherapy efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!