Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
3D-printing technology has revolutionized electrochemical applications by enabling rapid prototyping of various devices with high precision, even in highly complex structures. However, a significant challenge remains in developing less costly and more sustainable analytical approaches and methods aimed at mitigating the negative environmental impacts of chemical analysis procedures. In this study, we propose a solution to these challenges by creating a simple and versatile electrochemical system that combines 3D-printing technology with recyclable disposable materials, such as graphite from an exhausted battery and a stainless-steel screw. Our results demonstrate a novel strategy for developing electrodes and other laboratory-made devices that align with the principles of sustainability and green chemistry. Furthermore, we provide evidence of the effectiveness of the proposed system in an analytical application involving the simultaneous determination of tert-butylhydroquinone, acetaminophen, and levofloxacin using the voltammetric technique in lake and groundwater samples. The results indicate sufficient accuracy, with recovery values ranging from 91 to 110%. Additionally, we utilized the Analytical GREEnness calculator as a metric system to evaluate the environmental friendliness of the proposed electroanalytical protocol. The final score confirms a favorable level of sustainability, reaffirming the eco-friendly nature of our approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.125814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!