We successfully designed curcumin (Cur)-loaded composite nanoparticles consisting of high-hydrostatic-pressure-treated (HHP-treated) zein and pectin with a pressure of 150 MPa (zein-150 MPa-P-Cur), showing nano-spherical structure with high zeta-potential (-36.72 ± 1.14 mV) and encapsulation efficiency (95.64 ± 1.23 %). We investigated the interaction mechanism of the components in zein-150 MPa-P-Cur using fluorescence spectroscopy, molecular dynamics simulation, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. Compared with zein-P-Cur, the binding sites and binding energy (-53.68 kcal/mol vs. - 44.22 kcal/mol) of HHP-treated zein and Cur were increased. Meanwhile, the interaction force among HHP-treated zein, pectin, and Cur was significantly enhanced, which formed a tighter and more stable particle structure to further improve package performance. Additionally, Cur showed the best chemical stability in zein-150 MPa-P-Cur. And the bioavailability of Cur was increased to 65.53 ± 1.70 %. Collectively, composite nanoparticles based on HHP-treated zein and pectin could be used as a promising Cur delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.138286DOI Listing

Publication Analysis

Top Keywords

zein pectin
16
hhp-treated zein
16
composite nanoparticles
12
nanoparticles based
8
interaction mechanism
8
cur increased
8
zein
5
cur
5
fabrication characterization
4
characterization curcumin-loaded
4

Similar Publications

Prodigiosin (PG) is a natural compound produced by microorganisms, that is known for its promising bioactive properties. However, owing to its inherent water insolubility, low bioavailability, and poor stability, the practical application of prodigiosin remains challenging. In this work, the nanoparticles of prodigiosin-loaded zein-pectin were prepared using electrostatic deposition and antisolvent precipitation methods.

View Article and Find Full Text PDF

Investigation of the interaction mechanism of citrus pectin-polyphenol-protein complex.

Food Chem

December 2024

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China. Electronic address:

Citrus pectin is an anionic polysaccharide in citrus, which may improve the stability of citrus juices. This study investigated the influence of citrus pectin on the stability of protein-polyphenol complexes in the citrus juice model system and its interaction mechanism by multispectral and molecular dynamics (MD) simulations. Dynamic light scattering (DLS) and differential scanning calorimetry (DSC) showed that the citrus pectin-proanthocyanidin-zein complex improved the model citrus juices' cloud and thermal stability.

View Article and Find Full Text PDF

Enhanced Oral Bioavailability and Biodistribution of Voriconazole through Zein-Pectin-Hyaluronic Acid Nanoparticles.

ACS Appl Mater Interfaces

December 2024

Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil.

Nanotechnology-based drug delivery systems offer a solution to the pharmacokinetic limitations of voriconazole (VRC), including saturable metabolism and low oral bioavailability. This study developed zein/pectin/hyaluronic acid nanoparticles (ZPHA-VRC NPs) to improve VRC's pharmacokinetics and biodistribution. The nanoparticles had a spherical morphology with an average diameter of 268 nm, a zeta potential of -48.

View Article and Find Full Text PDF

Saffron extract (SE) was electrospun into pullulan-pectin (Pl-Pc), pullulan-pea protein-pectin (Pl-Pp-Pc), or zein nanofibers (NFs) for transdermal food supplement. The in vitro transdermal permeation mechanism and kinetics of SE from NFs were studied and compared with those of in vitro digestion. The ATR-FTIR spectra of NFs provided information on the interactions between SE and wall biopolymers.

View Article and Find Full Text PDF
Article Synopsis
  • Nuciferine has potential health benefits like lowering blood sugar and fat but faces challenges due to poor water solubility and low bioavailability.
  • Researchers created a ternary composite using short amylose, zein, and pectin to stabilize Pickering emulsions that can effectively deliver nuciferine, significantly improving its stability and bioavailability.
  • The optimal conditions for preparing these emulsions, which achieved a high encapsulation rate for nuciferine, resulted in small particle sizes and demonstrated good stability against various environmental factors, supporting better delivery and effectiveness of the active ingredient.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!