Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three new ligands based on the alloxazine core appended with pyridyl coordinating groups have been designed, synthesized, and characterized. The ligands are revealed to be redox-active in DMF solution, as attested to by CV and combined CV/EPR studies. The spin of the reduced species appears to be delocalized on the alloxazine core, as attested to by DFT calculations. The coordination abilities of one of the ligands toward Cu or Ni 3d cations revealed the formation of the first alloxazine-based 3D coordination polymers, presenting strong π-π stacking and substantial cavities. Preliminarily charge/discharge experiments in Li batteries evidence Li insertion in such systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c04550 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!