Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, perovskite solar cells (PSCs) based on quasi-two-dimensional (quasi-2D) perovskites have drawn more attention due to their excellent stability, although their efficiencies are still lower than those of 3D ones. Here we applied post-treatment of 2D perovskite GAMAPbI (GA = guanidinium, MA = methylammonium) films with acetaminophen (AMP) to improve their performance. The efficiency of the solar cells with 2 mg/mL AMP post-treatment increased to 18.01% from 16.72% for those without post-treatment. The efficiency improvement results from the enlarged grain size, reduced trap state density, and better energy level matching after AMP post-treatment. In addition, the stability of the solar cells is improved. The solar cells with AMP post-treatment maintain 91% of the original power conversion efficiency value after aging for 30 days in the atmosphere. This work opens a new approach for the efficiency and stability enhancement of quasi-2D PSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c17529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!