The polaronic effects at the atomic level hold paramount significance for advancing the efficacy of transition metal oxides in applications pertinent to renewable energy. The lattice-distortion mediated localization of photoexcited carriers in the form of polarons plays a pivotal role in the photocatalysis. This investigation focuses on rutile TiO, an important material extensively explored for solar energy conversion in artificial photosynthesis, specifically targeting the generation of green H through photoelectrochemical (PEC) HO splitting. By employing Hubbard-U corrected and hybrid density functional theory (DFT) methods, we systematically probe the polaronic effects in the catalysis of oxygen evolution reaction (OER) on the (110) surface of rutile TiO. Theoretical understanding of polarons within the surface, coupled with simulations of OER at distinct titanium (Ti) and oxygen (O) active sites, reveals diverse polaron formation energies within the lattice sites with strong preference for bulk and surface bridge (O) oxygen sites. Moreover, we provide the evidence for the facilitative role of polarons in OER. We find that hole polarons situated at the equatorial oxygen sites near the Ti-active site, along with bridge site hole polarons distal from the O active site yield a small reduction in OER overpotential by ~0.06 eV and ~0.12 eV, respectively. However, subsurface, equatorial, and bridge site hole polarons significantly reduce the Ti-active site OER overpotential by ~0.4 eV through the peroxo-type oxygen pathway. We also observe that the presence of hole polarons stabilizes the *OH, *O, and *OOH intermediate species compared to the scenario without hole polarons. Overall, this study provides a detailed mechanistic insight into polaron-mediated OER, offering a promising avenue for improving the catalytic activity of transition metal oxide-based photocatalysts catering to renewable energy requisites.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400060DOI Listing

Publication Analysis

Top Keywords

hole polarons
20
rutile tio
12
oer 110
8
110 surface
8
surface rutile
8
polaronic effects
8
transition metal
8
renewable energy
8
polarons
8
oxygen sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!