Purpose: To quantify the impact of treatment planning system beam model parameters, based on the actual spread in radiotherapy community data, on clinical treatment plans and determine which complexity metrics best describe the impact beam modeling errors have on dose accuracy.

Methods: Ten beam modeling parameters for a Varian accelerator were modified in RayStation to match radiotherapy community data at the 2.5, 25, 50, 75, and 97.5 percentile levels. These modifications were evaluated on 25 patient cases, including prostate, non-small cell lung, H&N, brain, and mesothelioma, generating 1,000 plan perturbations. Differences in the mean planned dose to clinical target volumes (CTV) and organs at risk (OAR) were evaluated with respect to the planned dose using the reference (50th-percentile) parameter values. Correlation between CTV dose differences, and 18 different complexity metrics were evaluated using linear regression; R-squared values were used to determine the best metric.

Results: Perturbations to MLC offset and transmission parameters demonstrated the greatest changes in dose: up to 5.7% in CTVs and 16.7% for OARs. More complex clinical plans showed greater dose perturbation with atypical beam model parameters. The mean MLC Gap and Tongue & Groove index (TGi) complexity metrics best described the impact of TPS beam modeling variations on clinical dose delivery across all anatomical sites; similar, though not identical, trends between complexity and dose perturbation were observed among all sites.

Conclusion: Extreme values for MLC offset and MLC transmission beam modeling parameters were found to most substantially impact the dose distribution of clinical plans and careful attention should be given to these beam modeling parameters. The mean MLC Gap and TGi complexity metrics were best suited to identifying clinical plans most sensitive to beam modeling errors; this could help provide focus for clinical QA in identifying unacceptable plans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087168PMC
http://dx.doi.org/10.1002/acm2.14318DOI Listing

Publication Analysis

Top Keywords

beam modeling
28
complexity metrics
20
metrics best
16
radiotherapy community
12
modeling parameters
12
clinical plans
12
dose
10
beam
9
determine complexity
8
tps beam
8

Similar Publications

The perception of the vehicle's environment is crucial for automated vehicles. Therefore, environmental sensors' reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle's lifetime.

View Article and Find Full Text PDF

One of the most critical components of reinforced concrete structures are beam-column joint systems, which greatly affect the overall behavior of a structure during a major seismic event. According to modern design codes, if the system fails, it should fail due to the flexural yielding of the beam and not due to the shear failure of the joint. Thus, a reliable tool is required for the prediction of the failure mode of the joints in a preexisting population of structures.

View Article and Find Full Text PDF

Microelectromechanical System Resonant Devices: A Guide for Design, Modeling and Testing.

Micromachines (Basel)

November 2024

Civil and Environmental Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Microelectromechanical systems (MEMSs) are attracting increasing interest from the scientific community for the large variety of possible applications and for the continuous request from the market to improve performances, while keeping small dimensions and reduced costs. To be able to simulate a priori and in real time the dynamic response of resonant devices is then crucial to guide the mechanical design and to support the MEMSs industry. In this work, we propose a simplified modeling procedure able to reproduce the nonlinear dynamics of MEMS resonant devices of arbitrary geometry.

View Article and Find Full Text PDF

Shape Optimization and Experimental Investigation of Glue-Laminated Timber Beams.

Materials (Basel)

December 2024

Division of Structural Mechanics and Material Mechanics, Faculty of Civil Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.

This study investigated the optimal shape of glue-laminated timber beams using an analytical model of a slender beam, taking into account the anisotropy of its strength properties as well as boundary conditions at the oblique bottom face of the beam. A control theory problem was formulated in order to optimize the shape of the modeled beam. Two optimization tasks were considered: minimizing material usage (Vmin) for a fixed load-carrying capacity (LCC) of the beam and maximizing load-bearing capacity (Qmax) for a given volume of the beam.

View Article and Find Full Text PDF

Study on the Bending and Shear Behavior of a New Type of Wet Joint in Precast Concrete Deck for Composite Bridges.

Materials (Basel)

December 2024

Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University, Chongqing 400000, China.

According to the mechanical characteristics of joints in steel-concrete composite bridge decks under the combined bending and shear, improved joint details with simple structure and convenient construction were studied, including lapped U-bars, lapped headed bars, and lapped hook bars. In order to test the mechanical properties of the three joint details and compare them with the existing lapped/welded linear bars, the tests of five specimens were carried out. The cracking load, ultimate load, failure mode, crack pattern, and reinforcement strain were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!