DNA-based assay for calorimetric determination of protein concentrations in pure or mixed solutions.

PLoS One

ThermoCap Laboratories Inc, Portland, Oregon, United States of America.

Published: March 2024

It was recently reported that values of the transition heat capacities, as measured by differential scanning calorimetry, for two globular proteins and a short DNA hairpin in NaCl buffer are essentially equivalent, at equal concentrations (mg/mL). To validate the broad applicability of this phenomenon, additional evidence for this equivalence is presented that reveals it does not depend on DNA sequence, buffer salt, or transition temperature (Tm). Based on the equivalence of transition heat capacities, a calorimetric method was devised to determine protein concentrations in pure and complex solutions. The scheme uses direct comparisons between the thermodynamic stability of a short DNA hairpin standard of known concentration, and thermodynamic stability of protein solutions of unknown concentrations. Sequences of two DNA hairpins were designed to confer a near 20°C difference in their Tm values. In all cases, evaluated protein concentrations determined from the DNA standard curves agreed with the UV-Vis concentration for monomeric proteins. For multimeric proteins evaluated concentrations were greater than determined by UV-Vis suggesting the calorimetric approach can also be an indicator of molecular stoichiometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906865PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298969PLOS

Publication Analysis

Top Keywords

protein concentrations
12
concentrations pure
8
transition heat
8
heat capacities
8
short dna
8
dna hairpin
8
thermodynamic stability
8
concentrations
6
dna
5
dna-based assay
4

Similar Publications

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Environmentally relevant concentrations of DBDPE (decabromodiphenyl ethane) induce intestinal toxicity in silkworms (Bombyx mori L.).

Environ Pollut

January 2025

Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China. Electronic address:

Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.

View Article and Find Full Text PDF

Thymol inhibits ergosterol biosynthesis in Nakaseomyces glabratus, but differently from azole antifungals.

J Mycol Med

December 2024

Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.

View Article and Find Full Text PDF

Long-term suppression of Microcystis aeruginosa by tannic acid: Risks of microcystin pollution and proteomic mechanisms.

J Hazard Mater

January 2025

School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China. Electronic address:

Harmful algal blooms are a critical eco-environmental issue with severe impacts on aquatic ecosystems and human health. Tannic acid (TA) has been suggested as an effective algal bloom control, but the molecular mechanisms of its interaction with algae cells and its effects on algal toxin release remain unclear. This study tracked toxin production and release in the toxigenic species Microcystis aeruginosa (M.

View Article and Find Full Text PDF

Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!