A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TOMMicroNet: Convolutional Neural Networks for Smartphone-Based Microscopic Detection of Tomato Biotic and Abiotic Plant Health Issues. | LitMetric

The image-based detection and classification of plant diseases has become increasingly important to the development of precision agriculture. We consider the case of tomato, a high-value crop supporting the livelihoods of many farmers around the world. Many biotic and abiotic plant health issues impede the efficient production of this crop, and laboratory-based diagnostics are inaccessible in many remote regions. Early detection of these plant health issues is essential for efficient and accurate response, prompting exploration of alternatives for field detection. Considering the availability of low-cost smartphones, artificial intelligence-based classification facilitated by mobile phone imagery can be a practical option. This study introduces a smartphone-attachable 30× microscopic lens, used to produce the novel tomato microimaging data set of 8,500 images representing 34 tomato plant conditions on the upper and lower sides of leaves as well as on the surface of tomato fruits. We introduce TOMMicroNet, a 14-layer convolutional neural network (CNN) trained to classify biotic and abiotic plant health issues, and we compare it against six existing pretrained CNN models. We compared two separate pipelines of grouping data for training TOMMicroNet, either presenting all data at once or separating the data into subsets based on the three parts of the plant. Comparing configurations based on cross-validation and F1 scores, we determined that TOMMicroNet attained the highest performance when trained on the complete data set, with 95% classification accuracy on both training and external data sets. Given TOMMicroNet's capabilities when presented with unfamiliar data, this approach has potential for the identification of plant health issues.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-04-23-0123-RDOI Listing

Publication Analysis

Top Keywords

plant health
20
health issues
20
biotic abiotic
12
abiotic plant
12
convolutional neural
8
plant
8
data set
8
data
7
tomato
5
health
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!