Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The image-based detection and classification of plant diseases has become increasingly important to the development of precision agriculture. We consider the case of tomato, a high-value crop supporting the livelihoods of many farmers around the world. Many biotic and abiotic plant health issues impede the efficient production of this crop, and laboratory-based diagnostics are inaccessible in many remote regions. Early detection of these plant health issues is essential for efficient and accurate response, prompting exploration of alternatives for field detection. Considering the availability of low-cost smartphones, artificial intelligence-based classification facilitated by mobile phone imagery can be a practical option. This study introduces a smartphone-attachable 30× microscopic lens, used to produce the novel tomato microimaging data set of 8,500 images representing 34 tomato plant conditions on the upper and lower sides of leaves as well as on the surface of tomato fruits. We introduce TOMMicroNet, a 14-layer convolutional neural network (CNN) trained to classify biotic and abiotic plant health issues, and we compare it against six existing pretrained CNN models. We compared two separate pipelines of grouping data for training TOMMicroNet, either presenting all data at once or separating the data into subsets based on the three parts of the plant. Comparing configurations based on cross-validation and F1 scores, we determined that TOMMicroNet attained the highest performance when trained on the complete data set, with 95% classification accuracy on both training and external data sets. Given TOMMicroNet's capabilities when presented with unfamiliar data, this approach has potential for the identification of plant health issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-04-23-0123-R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!