Animal models of neurodegenerative diseases have helped us to better understand the pathogenesis of neurodegenerative diseases. However, recent failure to translate pre-clinical model studies to the clinic urges us to develop more rigorous and faithful animal models in neurodegenerative diseases. As genetic manipulation of rats becomes much more accessible due to availability of CRISPR-Cas9 and other genomic editing toolboxes, rats have been emerging as a new model system for neurodegenerative diseases. Even though mouse models have been dominant over the last decades, rats may provide advantages over mice. Rats are more genetically and physiologically closer to humans than to mice. Also, certain rat models can represent deposition of tau, which is one of the key pathological features of Alzheimer's diseases and tauopathies. However, there is an unmet need for standardized, rigorous testing in rat models. We adopted two commonly used biochemical and immunofluorescence methods from mice and human postmortem brains to measure tau aggregation. Due to the intrinsic differences between mice and rats, e.g., size of rat brains, certain equipment is required for rat models to study tau pathologies. Along with specific tools, here we describe the detailed methods for rat models of neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3662-6_21 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!