Alzheimer's disease (AD) is distinguished by extracellular accumulation of amyloid-beta plaques and intracellular neurofibrillary tangles of Tau. Pathogenic Tau species are also known to display "prion-like propagation," which explains their presence in extracellular spaces as well. Glial population, especially microglia, tend to proclaim neuroinflammatory condition, disrupted signaling mechanisms, and cytoskeleton deregulation in AD. Omega-3 fatty acids play a neuroprotective role in the brain, which can trigger the anti-inflammatory pathways as well as actin dynamics in the cells. Improvement of cytoskeletal assembly mechanism by omega-3 fatty acids would regulate the other signaling cascades in the cells, leading to refining clearance of extracellular protein burden in AD. In this study, we focused on analyzing the ability of α-linolenic acid (ALA) as a regulator of actin dynamics to balance the signaling pathways in microglia, including endocytosis of extracellular Tau burden in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3662-6_17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!